Những câu hỏi liên quan
PV
Xem chi tiết
DP
Xem chi tiết
TX
Xem chi tiết
VG
13 tháng 8 2017 lúc 15:08

1) ta có: A= x^3 -8y^3=> A=(x-2y)(x^2 +2xy+4y^2)=>A=5.(29+2xy)   (vì x-2y=5 và x^2+4y^2=29)     (1)

Mặt khác : x-2y=5(gt)=> (x-2y)^2=25=> x^2-4xy+4y^2=25=>29-4xy=25(vì x^2+4y^2=29)

                                                                                          => xy=1    (2)

Thay (2) vào (1) ta đc: A= 5.(29+2.1)=155

Vậy gt của bt A là 155

2) theo bài ra ta có: a+b+c=0 => a+b=-c=>(a+b)^2=c^2=> a^2 +b^2+2ab=c^2=>c^2-a^2-b^2=2ab

=> \(\left(c^2-a^2-b^2\right)^2=4a^2b^2\)

=>\(c^4+a^4+b^4-2c^2a^2+2a^2b^2-2b^2c^2=4a^2b^2\)

=>\(a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\)

=>\(2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)

=> \(a^4+b^4+c^4=\frac{1}{2}\left(a^2+b^2+c^2\right)^2\) (đpcm)

Bình luận (0)
NO
Xem chi tiết
H24
27 tháng 11 2019 lúc 20:50

Ta có : \(a^3+b^3+3\left(a^2+b^2\right)+4\left(a+b\right)+4=0\)

\(=>\left(a+1\right)^3+\left(b+1\right)^3+a+b+2=0\)

\(=>\left(a+b+2\right)\left[\left(a+1\right)^2-\left(a+1\right)\left(b+1\right)+\left(b+1\right)^2\right]+\left(a+b+2\right)=0\)

\(=>\left(a+b+2\right)\left(a^2+b^2+a+b-ab+2\right)=0\)

\(=>\left(a+b+2\right)2\left(a^2+b^2+a+b-ab+2\right)=0\)

\(=>\left(a+b+2\right)\left(2a^2+2b^2+2a+2b-2ab+4\right)=0\)

\(=>\left(a+b+2\right)\left[\left(a-b\right)^2+\left(a+1\right)^2+\left(b+1\right)^2+2\right]=0\)

Lại có : \(\left(a-b\right)^2\ge0;\left(a+1\right)^2\ge0;\left(b+1\right)^2\ge0\)

\(=>\left(a-b\right)^2+\left(a+1\right)^2+\left(b+1\right)^2+2\ge0\)

\(=>a+b+2=0=>a+b=-2=>M=2018.\left(-2\right)^2=8072\)

Bình luận (0)
 Khách vãng lai đã xóa
OA
Xem chi tiết
TH
17 tháng 4 2022 lúc 21:36

\(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc +2ca=0\)

\(\Leftrightarrow2ab+2bc+2ca=-14\)

\(\Leftrightarrow ab+bc+ca=-7\)

\(\Rightarrow\left(ab+bc+ca\right)^2=49\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc=49\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=49\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=49\).

\(a^2+b^2+c^2=14\)

\(\Rightarrow\left(a^2+b^2+c^2\right)^2=14^2=196\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=196\)

\(\Leftrightarrow a^4+b^4+c^4+2.49=196\)

\(\Leftrightarrow a^4+b^4+c^4=98\)

Bình luận (0)
H24
17 tháng 4 2022 lúc 21:42

\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow14+2\left(ab+bc+ac\right)=0\Leftrightarrow ab+bc+ac=-7\)

Suy ra : \(\left(ab+bc+ac\right)^2=49\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=49\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=49\)

\(a^2+b^2+c^2=14\Leftrightarrow\left(a^2+b^2+c^2\right)^2=196\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=196\)

\(\Leftrightarrow a^4+b^4+c^4+2.49=256\)  \(\Leftrightarrow a^4+b^4+c^4=98\)

Vậy ... 

Bình luận (1)
NA
Xem chi tiết
TA
Xem chi tiết
CL
Xem chi tiết
NL
2 tháng 9 2016 lúc 21:47
A = 2032128
Bình luận (0)
PL
15 tháng 5 2018 lúc 15:35

A = 2032128

Bình luận (0)
BN
14 tháng 3 2019 lúc 21:30

(a+b+c)2=a2+b2+c2+2ac+2bc+2ab

=>02=1+2(ac+bc+ab)

=>ac+bc+ab=-1/2

=>(ac+bc+ab)2=a2b2+b2c2+a2c2+2a2bc+2b2ac+2c2ab

(ac+bc+ab)2=a2b2+b2c2+a2c2+2abc(a+b+c)

=>(-1/2)2=a2b2+b2c2+a2c2+2abc.0

=>a2b2+b2c2+a2c2=1/4

(a2+b2+c2)2=a4+b4+c4+2a2b2+2b2c2+2a2c2

(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2)

12=a4+b4+c4+2.1/4

1=a4+b4+c4.1/2

a4+b4+c4=1-1/2=1/2

Bình luận (0)
AP
Xem chi tiết
CD
14 tháng 10 2019 lúc 23:47

bài 4. Có x^2 + y^2 + z^2 <0,x,y,z>0 nên đề bài sai

Bình luận (0)