Cho A=2017^10, B=2017^8 nhân 2018^2. Sánh A vàB
so sánh a và b biết a=2016/2017+2017/2018+2018/2019+2019/2016 và b=1/8+1/9+1/10+...+1/63
Hãy so sánh:
A=10^2016+2018/10^2017+2018
B=10^2017+2018/10^2018+2018
nhanh lên các bn mik cần gấp
Không dùng máy tính hãy so sánh A=10^2016+2018/10^2017+2018 và B=10^2017+2018/10^2018+2018
Ta có: \(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)\(\Rightarrow10A=\frac{10^{2017}+2018.10}{10^{2017}+2018}=\frac{10^{2017}+2018+2018.9}{10^{2017}+2018}=1+\frac{2018.9}{10^{2017}+2018}\)
Tương tự ta có: \(10B=1+\frac{2018.9}{10^{2018}+2018}\)
Vì \(2017< 2018\)\(\Rightarrow10^{2017}< 10^{2018}\)\(\Rightarrow10^{2017}+2018< 10^{2018}+2018\)
\(\Rightarrow\frac{2018.9}{10^{2017}+2018}>\frac{2018.9}{10^{2018}+2018}\)\(\Rightarrow1+\frac{2018.9}{10^{2017}+2018}>1+\frac{2018.9}{10^{2018}+2018}\)
hay \(10A>10B\)\(\Rightarrow A>B\)
Vậy \(A>B\)
Ta có : \(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)
\(\Rightarrow10A=\frac{10^{2017}+20180}{10^{2017}+2018}=\frac{10^{2017}+2018+18162}{10^{2017}+2018}=1+\frac{18162}{10^{2017}+2018}\)
Ta có : \(B=\frac{10^{2017}+2018}{10^{2018}+2018}\)
\(\Rightarrow\frac{10^{2018}+20180}{10^{2018}+2018}=\frac{10^{2018}+2018+18162}{10^{2018}+2018}=1+\frac{18162}{10^{2018}+2018}\)
Vì \(10^{2017}+2018< 10^{2018}+2018\) nên \(\frac{18162}{10^{2017}+2018}>\frac{18162}{10^{2018}+2018}\)
\(\Rightarrow1+\frac{18162}{10^{2017}+2018}>1+\frac{18162}{10^{2017}+2018}\Rightarrow10A>10B\Rightarrow A>B\)
Vậy A > B
Làm khác bạn kia 1 xíu à
sssso sánh A và B
A=9/102018 + 7/102017 và B = 8/102018 + 8/102018
So sánh A và B:
A=\(\frac{10^{2016}+2018}{10^{2017}+2018^{ }}\)
B=\(\frac{10^{2017}+2018}{10^{2018}+2018}\)
\(+)A=\frac{10^{2016}+2018}{10^{2017}+2018}\)
\(10A=\frac{10^{2017}+20180}{10^{2017}+2018}=1+\frac{18162}{10^{2017}+2018}\left(1\right)\)
\(+)10B=\frac{10^{2018}+20180}{10^{2018}+2018}=1+\frac{18162}{10^{2018}+2018}\left(2\right)\)
Từ (1),(2)=> \(\frac{18162}{10^{2017}+2018} >\frac{18162}{10^{2018}+2018}\)
=> 10A>10B
=>A>B
Cho A = 2017 mũ 2018 + 1 phần 2017 mũ 2018 - 3 và b bằng 2017 mũ 2018 - 1 phần 2017 mũ 2018 - 5 hãy so sánh a và b
\(A=\frac{2017^{2018+1}}{2017^{2018-3}}\)và \(B=\frac{2017^{2018-1}}{2017^{2018-5}}\)
Có \(A=\frac{2017^{2019}}{2017^{2015}}\)và \(B=\frac{2017^{2017}}{2017^{2013}}\)
Mà\(\frac{2017^{2019}}{2017^{2015}}>\frac{2017^{2018}}{2017^{2015}}\)và\(\frac{2017^{2017}}{2017^{2013}}>\frac{2017^{2017}}{2017^{2015}}\)
Vì \(\frac{2017^{2018}}{2017^{2015}}>\frac{2017^{2017}}{2017^{2015}}\)
Vậy A>B
không thực hiện phép tính hãy so sánh A= 2017 . 2018 - 2000 và B= 2017^2 + 17
các cao nhân giúp em vói ạ
so sánh A=2017 mũ 10 + 2017 mũ 9 và B=2018 mũ 10
\(\text{So sánh : }\)
\(A=2017^{10}+2017^9=1,1149984e33\)
\(B=2018^{10}=1,11998349e33\)
\(\text{Vì : }1,1149984e33< 1,11998349e33\text{ nên }A< B\)
Cho A= 102016+1/102017+1;B=102017+1/102018+1
So sánh A và B
Ta có : \(10.A=\frac{10^{2017}+10}{10^{2017}+1}=\frac{10^{2017}+1+9}{10^{2017}+1}=\frac{10^{2017}+1}{10^{2017}+1}+\frac{9}{10^{2017}+1}=1+\frac{9}{10^{2017}+1}\)
\(10.B=\frac{10^{2018}+10}{10^{2018}+1}=\frac{10^{2018}+1+9}{10^{2018}+1}=\frac{10^{2018}+1}{10^{2018}+1}+\frac{9}{10^{2018}+1}=1+\frac{9}{10^{2018}+1}\)
Vì \(1=1\)và \(\frac{9}{10^{2017}+1}>\frac{9}{10^{2018}+1}\)nên \(1+\frac{9}{10^{2017}+1}>1+\frac{9}{10^{2018}+1}\)hay \(A>B\)
Vậy \(A>B\)
a hơn b
a hơn b
a hơn b
chúc học giỏi