Những câu hỏi liên quan
NT
Xem chi tiết
H24
10 tháng 4 2022 lúc 15:34

A>B do A>4 cònB<4

Bình luận (1)
TL
28 tháng 11 2024 lúc 22:49

Con ngu

 

Bình luận (0)
NH
Xem chi tiết
NH
15 tháng 5 2020 lúc 21:38

nhanh lên các bn mik cần gấp

Bình luận (0)
 Khách vãng lai đã xóa
NM
Xem chi tiết
NN
12 tháng 5 2020 lúc 16:57

Ta có: \(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)\(\Rightarrow10A=\frac{10^{2017}+2018.10}{10^{2017}+2018}=\frac{10^{2017}+2018+2018.9}{10^{2017}+2018}=1+\frac{2018.9}{10^{2017}+2018}\)

Tương tự ta có: \(10B=1+\frac{2018.9}{10^{2018}+2018}\)

Vì \(2017< 2018\)\(\Rightarrow10^{2017}< 10^{2018}\)\(\Rightarrow10^{2017}+2018< 10^{2018}+2018\)

\(\Rightarrow\frac{2018.9}{10^{2017}+2018}>\frac{2018.9}{10^{2018}+2018}\)\(\Rightarrow1+\frac{2018.9}{10^{2017}+2018}>1+\frac{2018.9}{10^{2018}+2018}\)

hay \(10A>10B\)\(\Rightarrow A>B\)

Vậy \(A>B\)

Bình luận (0)
 Khách vãng lai đã xóa
MQ
12 tháng 5 2020 lúc 17:11

Ta có : \(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)

\(\Rightarrow10A=\frac{10^{2017}+20180}{10^{2017}+2018}=\frac{10^{2017}+2018+18162}{10^{2017}+2018}=1+\frac{18162}{10^{2017}+2018}\)

Ta có : \(B=\frac{10^{2017}+2018}{10^{2018}+2018}\)

\(\Rightarrow\frac{10^{2018}+20180}{10^{2018}+2018}=\frac{10^{2018}+2018+18162}{10^{2018}+2018}=1+\frac{18162}{10^{2018}+2018}\)

Vì \(10^{2017}+2018< 10^{2018}+2018\) nên \(\frac{18162}{10^{2017}+2018}>\frac{18162}{10^{2018}+2018}\)

\(\Rightarrow1+\frac{18162}{10^{2017}+2018}>1+\frac{18162}{10^{2017}+2018}\Rightarrow10A>10B\Rightarrow A>B\)

Vậy A > B

Làm khác bạn kia 1 xíu à

Bình luận (0)
 Khách vãng lai đã xóa
CC
Xem chi tiết
H24
Xem chi tiết
LT
9 tháng 5 2018 lúc 22:19

\(+)A=\frac{10^{2016}+2018}{10^{2017}+2018}\)

\(10A=\frac{10^{2017}+20180}{10^{2017}+2018}=1+\frac{18162}{10^{2017}+2018}\left(1\right)\)

\(+)10B=\frac{10^{2018}+20180}{10^{2018}+2018}=1+\frac{18162}{10^{2018}+2018}\left(2\right)\)

Từ (1),(2)=> \(\frac{18162}{10^{2017}+2018} >\frac{18162}{10^{2018}+2018}\)

=> 10A>10B

=>A>B

Bình luận (0)
LT
9 tháng 5 2018 lúc 22:22

k đúng cho mình đi, mình giải cho.

Bình luận (0)
LP
Xem chi tiết
CC
13 tháng 4 2019 lúc 21:52

\(A=\frac{2017^{2018+1}}{2017^{2018-3}}\)và \(B=\frac{2017^{2018-1}}{2017^{2018-5}}\)

Có \(A=\frac{2017^{2019}}{2017^{2015}}\)và \(B=\frac{2017^{2017}}{2017^{2013}}\)

\(\frac{2017^{2019}}{2017^{2015}}>\frac{2017^{2018}}{2017^{2015}}\)\(\frac{2017^{2017}}{2017^{2013}}>\frac{2017^{2017}}{2017^{2015}}\)

Vì \(\frac{2017^{2018}}{2017^{2015}}>\frac{2017^{2017}}{2017^{2015}}\)

Vậy A>B

Bình luận (0)
TV
Xem chi tiết
DN
Xem chi tiết
DN
21 tháng 9 2018 lúc 22:37

thánh nó trl

Bình luận (0)
H24
21 tháng 9 2018 lúc 22:43

\(\text{So sánh : }\)

\(A=2017^{10}+2017^9=1,1149984e33\)

\(B=2018^{10}=1,11998349e33\)

\(\text{Vì : }1,1149984e33< 1,11998349e33\text{ nên }A< B\)

Bình luận (0)
DN
21 tháng 9 2018 lúc 22:52

ko tính kết quả

Bình luận (0)
AS
Xem chi tiết
KM
11 tháng 5 2017 lúc 18:05

Ta có : \(10.A=\frac{10^{2017}+10}{10^{2017}+1}=\frac{10^{2017}+1+9}{10^{2017}+1}=\frac{10^{2017}+1}{10^{2017}+1}+\frac{9}{10^{2017}+1}=1+\frac{9}{10^{2017}+1}\)

\(10.B=\frac{10^{2018}+10}{10^{2018}+1}=\frac{10^{2018}+1+9}{10^{2018}+1}=\frac{10^{2018}+1}{10^{2018}+1}+\frac{9}{10^{2018}+1}=1+\frac{9}{10^{2018}+1}\)

Vì \(1=1\)và \(\frac{9}{10^{2017}+1}>\frac{9}{10^{2018}+1}\)nên \(1+\frac{9}{10^{2017}+1}>1+\frac{9}{10^{2018}+1}\)hay \(A>B\)

Vậy \(A>B\)

Bình luận (0)
NM
11 tháng 5 2017 lúc 17:50

a hơn b

a hơn b

a hơn b 

chúc học giỏi

Bình luận (0)