chứng minh \(a^4+b^4+4a^2b^2 ≥3(a^3b+ab^3)\) biết rằng a,b > 0
chứng minh : a^4 - b^4 =b^4+4ab^3+6a^2b^2+4a^3b+a^4
chứng minh : a^4 - b^4 =b^4+4ab^3+6a^2b^2+4a^3b+a^4
a)Chứng minh rằng với mọi a và b thì
a^4 - 2a^3b+2a^2b^2 - 2ab^3+ b^4 lớn hơn hoăc bằng 0
b) Cho a^2 = b^2+c^2. Chứng minh rằng (5a - 3b+ 4c)(5a - 3b - 4c) lớn hơn hoặc bằng 0
Chứng minh các hằng đẳng thức
x^4=a^4 +4a^3+6a^2b^2+4ab^3+b^4
x^5=a^5+5a^4+10a^3b^2+10a^2b^3+5ab^4+b^4
a) Sửa đề :
\(x^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)
\(x^4=\left(a^4+3a^3b+3a^2b^2+ab^3\right)+\left(a^3b+3a^2b^2+3ab^3+b^4\right)\)
\(x^4=a\left(a^3+3a^2b+3ab^2+b^3\right)+b\left(a^3+3a^2b+3ab^2+b^3\right)\)
\(x^4=\left(a+b\right)\left(a^3+3a^2b+3ab^2+b^3\right)\)
\(x^4=\left(a+b\right)\left[\left(a^3+2a^2b+ab^2\right)+\left(a^2b+2ab^2+b^3\right)\right]\)
\(x^4=\left(a+b\right)\left[a\left(a^2+2ab+b^2\right)+b\left(a^2+2ab+b^2\right)\right]\)
\(x^4=\left(a+b\right)^2\left(a+2ab+b^2\right)\)
\(x^4=\left(a+b\right)^4\)
b) Sửa đề:
\(x^5=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5\)
\(x^5=\left(a^5+4a^4b+6a^3b^2+4a^2b^3+ab^4\right)+\left(a^4b+4a^3b^2+6a^2b+4ab^4+b^5\right)\)
\(x^5=a\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)+b\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)\)
\(x^5=\left(a+b\right)\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)\)
\(x^5=\left(a+b\right)\left[\left(a^4+3a^3b+3a^2b^2+ab^3\right)+\left(a^3b+3a^2b^2++3ab^3+b^4\right)\right]\)
\(x^5=\left(a+b\right)\left[a\left(a^3+3a^2b+3ab^2+b^3\right)+b\left(a^3+3a^2b+3ab^2+b^3\right)\right]\)
\(x^5=\left(a+b\right)^2\left(a^3+3a^2b+3ab^2+b^3\right)\)
\(x^5=\left(a+b\right)^2\left[\left(a^3+2a^2b+ab^2\right)+\left(a^2b+2ab^2+b^3\right)\right]\)
\(x^5=\left(a+b\right)^2\left[a\left(a^2+2ab+b^2\right)+b\left(a^2+2ab+b^2\right)\right]\)
\(x^5=\left(a+b\right)^3\left(a^2+2ab+b^2\right)\)
\(x^5=\left(a+b\right)^5\)
Bạn có thể tự tóm tắt lại
Chứng minh rằng : \(\frac{a^4+b^4}{2}\ge ab^3+a^3b-a^2b^2\)
\(\frac{a^4+b^4}{2}\ge ab^3+a^3b-a^2b^2\)
\(\Leftrightarrow a^4+b^4+2a^2b^2-2ab^3-2a^3b\ge0\)
\(\Leftrightarrow\left(a^2+b^2\right)^2-2ab\left(a^2+b^2\right)\ge\left(a^2+b^2\right).2\sqrt{a^2.b^2}-2ab\left(a^2+b^2\right)=0\)( luôn đúng )
vì BĐT cuối luôn đúng nên BĐT đã cho đúng \(\Leftrightarrow a=b\)
Chứng minh rằng: \(\frac{a^4+b^4}{2}>=ab^3+a^3b-a^2b^2\)
\(a^4+b^4\ge2a^3b+2ab^3-2a^2b^2\)
\(\Leftrightarrow\left(a^4-2a^3b+a^2b^2\right)+\left(b^4-2ab^3+a^2b^2\right)\ge0\)
\(\Leftrightarrow\left(a^2-ab\right)^2+\left(b^2-ab\right)^2\ge0\) (đúng)
\(\Rightarrow\)Điều phải chứng minh
4 + b 4 ≥ 2a 3b + 2ab 3 − 2a 2b 2
⇔ a 4 − 2a 3b + a 2b 2 + b 4 − 2ab 3 + a 2b 2 ≥ 0
⇔ a 2 − ab 2 + b 2 − ab 2 ≥ 0 (đúng)
⇒Điều phải chứng minh
chúc cậu hok tốt @_@
cho a,b > 0 thỏa mãn a +2b + ab^2 = 4. Chứng minh rằng a^3+2b^3 >=3
Lời giải:
Áp dụng BĐT Cô-si:
a^3+2b^3=a^3+b^3+b^3\geq 3\sqrt[3]{a^3b^6}=3ab^2$
$a^3+1+1\geq 3a$
$b^3+1+1\geq 3b$
Cộng theo vế các BĐT trên:
$a^3+2b^3+(a^3+2)+2(b^3+2)\geq 3ab^2+3a+6b$
$\Leftrightarrow 2(a^3+2b^3)+6\geq 3(ab^2+a+2b)=3.4=12$
$\Rightarrow a^3+2b^3\geq (12-6):2=3$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=1$
với x > 0,x ≠ 4
a,Tính giá trị biểu thức A khi x = 2
b,Chứng minh rằng P = B : A = 1 -
Ta có : \(\dfrac{4a-3b}{2}=\dfrac{5b-4c}{3}=\dfrac{3c-5a}{4}\)
\(\Leftrightarrow\dfrac{20a-15b}{10}=\dfrac{15b-12c}{9}=\dfrac{12c-20a}{16}=\dfrac{20a-15b+15b-12c+12c-20a}{10+9+16}=0\)\(\Leftrightarrow\left\{{}\begin{matrix}4a-3b=0\\5b-4c=0\\3c-5a=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{3}=\dfrac{b}{4}\\\dfrac{b}{4}=\dfrac{c}{5}\\\dfrac{c}{5}=\dfrac{a}{3}\end{matrix}\right.\Leftrightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)