Giải phương trình sau:\(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)
Giải các phương trình và bất phương trình sau:
a, \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)
b, \(\frac{2x\left(x^2+1\right)-x^2-4}{3}+x\left(x^2-x+1\right)>\frac{5x^2+5}{3}\)
a) \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)
\(\left(\frac{x-1}{2}+1\right)+\left(\frac{x-2}{3}+3\right)+\left(\frac{x-3}{4}+1\right)=\left(\frac{x-4}{5}+1\right)+\left(\frac{x-5}{6}+1\right)\)
\(\frac{x-1}{2}+\frac{x-1}{3}+\frac{x-1}{4}=\frac{x-1}{5}+\frac{x-1}{6}\)
\(\left(x-1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)\)=0
\(x-1=0\)
\(x=1\)
Bài 1. Giải các phương trình sau :
a) 7x - 35 = 0 b) 4x - x - 18 = 0
c) x - 6 = 8 - x d) 48 - 5x = 39 - 2x
Bài 2. Giải các phương trình sau :
a) 5x - 8 = 4x - 5 b) 4 - (x - 5) = 5(x - 3x)
c) 32 - 4(0,5y - 5) = 3y + 2 d) 2,5(y - 1) = 2,5y
Bài 3. Giải các phương trình sau :
a) \(\frac{3x-7}{5}=\frac{2x-1}{3}\)
b) \(\frac{4x-7}{12}- x=\frac{3x}{8}\)
Bài 4. Giải các phương trình sau :
a) \(\frac{5x-8}{3}=\frac{1-3x}{2}\)
b) \(\frac{x-5}{6}-\frac{x-9}{4}=\frac{5x-3}{8}+2\)
Bài 5. Giải các phương trình sau :
a) 6(x - 7) = 5(x + 2) + x b) 5x - 8 = 2(x - 4) + 3
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
có bị viết nhầm thì thông cảm nha!
la`thu'hai nga`y 19 nhe
Giải phương trình sau :
\(\frac{4}{x^2}+\frac{x^2}{4-x^2}+\frac{5}{2}\left(\frac{\sqrt{4-x^2}}{x}+\frac{x}{\sqrt{4-x^2}}\right)+2=0\)
\(pt\Leftrightarrow\left(\frac{4}{x^2}+\frac{x^2}{4-x^2}\right)+\frac{5}{2}\left(\frac{\sqrt{4-x^2}}{x}+\frac{x}{\sqrt{4-x^2}}\right)+2=0\)
\(\Leftrightarrow\left(\frac{\sqrt{4-x^2}}{x}+\frac{x}{\sqrt{4-x^2}}\right)^2-1+\frac{5}{2}\left(\frac{\sqrt{4-x^2}}{x}+\frac{x}{\sqrt{4-x^2}}\right)+2=0\)
Đặt \(\frac{\sqrt{4-x^2}}{x}+\frac{x}{\sqrt{4-x^2}}=t\)pt thành
\(t^2-1+\frac{5}{2}t+2=0\)\(\Rightarrow\orbr{\begin{cases}t=-2\\t=-\frac{1}{2}\end{cases}}\)(loại)
-->PT vô nghiệm
\(\frac{3}{x^2}\)hay\(\frac{4}{x^2}\)
Thắng Nguyễn \(\frac{4}{x^2}\) . T làm ra r , you k cần làm nữa đâu , thanks :))
Giải bất phương trình :
\(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}>\frac{x-4}{5}+\frac{x-5}{6}\)
Theo đề bài ta có: \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}-\frac{x-4}{5}-\frac{x-5}{6}>0\)
=> \(\frac{x-1}{2}+1+\frac{x-2}{3}+1+\frac{x-3}{4}+1-\left(\frac{x-4}{5}+1\right)-\left(\frac{x-5}{6}+1\right)>1\)
<=> \(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}-\frac{x+1}{5}-\frac{x+1}{6}>1\)
<=>\(\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)>1\)
<=> \(\left(x+1\right)\cdot\frac{43}{60}>1\)
<=>\(x+1>\frac{60}{43}\)
<=> x>\(\frac{17}{43}\)
Vậy x>17/43
Giải phương trình sau: \(\frac{1}{x+1}+\frac{4}{x+4}-\frac{2}{x+2}-\frac{3}{x+3}=0\)
giải phương trình sau: \(\frac{4}{x^2+2x-3}=\frac{2x-5}{x+3}-\frac{2x}{x-1}\)
\(\frac{4}{x^2+2x-3}=\frac{2x-5}{x+3}-\frac{2x}{x-1}\) \(\left(ĐKXĐ:x\ne1;-3\right)\)
\(\Leftrightarrow\frac{4}{\left(x^2-x\right)+\left(3x-3\right)}=\frac{2x-5}{x+3}-\frac{2x}{x-1}\)
\(\Leftrightarrow\frac{4}{\left(x+3\right)\left(x-1\right)}=\frac{\left(2x-5\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}-\frac{2x\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}\)
\(\Rightarrow4=\left(2x-5\right)\left(x-1\right)-2x\left(x+3\right)\)
\(\Leftrightarrow4=2x^2-2x-5x+5-2x^2-6x\)
\(\Leftrightarrow-13x+5=4\)
\(\Leftrightarrow-13x=-1\)
\(\Leftrightarrow x=\frac{1}{13}\left(tm\right)\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{1}{13}\right\}\)
Giải phương trình sau:
\(\frac{x+1}{507}+\frac{x+2}{506}+\frac{x+3}{505}=\frac{x+4}{504}+\frac{x+5}{503}+\frac{x-6}{604}\)
giải phương trình sau:\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+7}=0\)
a,Giải phương trình sau : (2x + 3)(x-5)=42 +6x
b, Gải phương trình sau: \(\frac{x}{2x-6}-\frac{x}{2x+2}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)
c,Gải bất phương trình sau và biểu diễn nghiệm trên trục số : \(\frac{12x+1}{12}\le\frac{9x+1}{3}-\frac{8x+1}{4}\)
giải phương trình sau
\(\frac{x+1}{x-1}+\frac{x-2}{x+2}+\frac{x-3}{x+3}+\frac{x+4}{x-4}=4\)