Những câu hỏi liên quan
GO
Xem chi tiết
IS
13 tháng 3 2020 lúc 21:11

\(A=\frac{19^{30}+5}{19^{31}+5}=>19A=\frac{19^{31}+95}{19^{31}+5}=1+\frac{90}{19^{31}+5}\left(1\right)\)

\(B=\frac{19^{31}+5}{19^{32}+5}=>19B=\frac{19^{32}+95}{19^{32}+5}=1+\frac{90}{19^{32}+5}\left(2\right)\)

từ (1) and (2)

=>19A>19B

=>A>B

Bình luận (0)
 Khách vãng lai đã xóa
HH
Xem chi tiết
DD
6 tháng 4 2017 lúc 22:50

A=\(\frac{5^5}{5+5^2+5^3+5^4}=\frac{5^5}{5\left(1+5+5^2+5^3\right)}=\frac{5^4}{1+5+25+125}\)=\(\frac{5^4}{1+155}=\frac{625}{156}\)

B=\(\frac{3^5}{3+3^2+3^3+3^4}=\frac{3^5}{3\left(1+3+3^2+3^3\right)}=\frac{3^4}{1+3+9+27}\)=\(\frac{3^4}{1+39}=\frac{81}{40}\)

Ta có:\(\frac{625}{156}\)>\(\frac{81}{40}\)\(\Rightarrow A\)>\(B\)

Bình luận (0)
DT
Xem chi tiết
DT
16 tháng 7 2016 lúc 13:11

sao hong ai dê y vay troi

Bình luận (0)
TT
16 tháng 7 2016 lúc 13:27

mình viết tắt bạn tự hiểu nha:

a=1+(59/1+5+525+...+58

b=1+(39/1+3+33+....+38

VD:A/B-C/D=A.C/B.D-C.B/D.B

TƯƠNG TỰ NHƯ A,B BẠN TÍNH RA

Bình luận (0)
NH
16 tháng 7 2016 lúc 13:57

\(5^9>3^9\)Ta thấy mẫu số và tử số của biểu thức \(A\)giống nhau từ 1 đến  \(5^8\)nên cộng vào sẽ chia hết và còn thừa \(5^9\)Nên \(\Rightarrow\)\(A=5^9\)

Ta thấy mẫu số và tử số của biểu thức \(B\)giống nhau từ 1 đến  \(3^8\)nên cộng vào sẽ chia hết và còn thừa \(3^9\)Nên \(\Rightarrow\)\(B=3^9\)

Ta có\(:\)So sánh  \(A\)với  \(B\)hay so sánh \(3^9\)với  \(5^9\)

\(\Rightarrow\)\(5^9>3^9\)( Do \(5>3\))

\(\Rightarrow\)\(A>B\)

Bình luận (0)
MY
Xem chi tiết
LD
11 tháng 8 2016 lúc 15:19

So sánh:

\(P=\frac{4}{7}+5+\frac{3}{7^2}+\frac{5}{7^3}+\frac{6}{7^4}\)

\(Q=\frac{5}{7^4}+5+\frac{6}{7^2}+\frac{4}{7}+\frac{5}{7^3}\)

Ta có : \(P=\left\{\frac{4}{7}+5+\frac{5}{7^3}\right\}+\left\{\frac{3}{7^2}+\frac{6}{7^4}\right\}\)

           \(Q=\left\{\frac{4}{7}+5+\frac{5}{7^3}\right\}+\left\{\frac{5}{7^4}+\frac{6}{7^2}\right\}\)

So sánh : \(\frac{3}{7^2}+\frac{6}{7^4}\)và \(\frac{5}{7^4}+\frac{6}{7^2}\)

Ta có : \(\frac{3}{7^2}+\frac{6}{7^4}=\frac{49.3}{7^4}+\frac{6}{7^4}\)

            \(\frac{5}{7^4}+\frac{6}{7^2}=\frac{5}{7^4}+\frac{49.6}{7^4}\)

Vì 49.3 + 6 < 49.6 + 5 nên Q > P.

           

Bình luận (0)
NN
Xem chi tiết
PA
6 tháng 1 2016 lúc 12:55

\(\frac{1}{5}A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^9}=1\)
\(\frac{1}{3}B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^9}=1\)
Vì  \(\frac{1}{5}<\frac{1}{3}\)Nên \(\frac{1}{5}A<\frac{1}{5}B\)
Vậy A<B

Bình luận (0)
NN
6 tháng 1 2016 lúc 12:57

ai trả lời cũng sai hết rồi 

Tui Gợi ý là A > B

Bây giờ các bạn ghi cách giải đi

 

Bình luận (0)
PQ
6 tháng 1 2016 lúc 12:58

có ba đáp án 

A  >

B  <

C  =

Bình luận (0)
TK
Xem chi tiết
LH
3 tháng 7 2021 lúc 8:56

a, \(\sqrt{15}+\sqrt{8}< \sqrt{16}+\sqrt{9}=4+3=7\)

\(\Rightarrow\sqrt{15}+\sqrt{8}< 7\)

b, \(\sqrt{10}+\sqrt{17}+1>\sqrt{9}+\sqrt{16}+1=3+4+1=8\)

\(\sqrt{61}< \sqrt{64}=8\)

\(\Rightarrow\sqrt{10}+\sqrt{17}+1>\sqrt{61}\)

c, \(\sqrt{10}+\sqrt{5}+1>\sqrt{9}+\sqrt{4}+1=3+2+1=6\)

\(\sqrt{35}< \sqrt{36}=6\)

\(\Rightarrow\sqrt{10}+\sqrt{5}+1>\sqrt{35}\)

Bình luận (0)
PK
Xem chi tiết
AH
19 tháng 7 2021 lúc 17:01

Lần sau bạn chú ý viết đầy đủ đề.

1.

\(\sqrt{9+4\sqrt{5}-\sqrt{9-4\sqrt{5}}}=\sqrt{9+4\sqrt{5}-\sqrt{5-2\sqrt{4.5}+4}}\)

\(=\sqrt{9+4\sqrt{5}-\sqrt{(\sqrt{5}-\sqrt{4})^2}}=\sqrt{9+4\sqrt{5}-(\sqrt{5}-\sqrt{4})}\)

\(=\sqrt{9+4\sqrt{5}-\sqrt{5}+2}=\sqrt{11+3\sqrt{5}}\)

Bình luận (1)
AH
19 tháng 7 2021 lúc 17:02

2.

\(\sqrt{8-2\sqrt{7}-\sqrt{8+2\sqrt{7}}}=\sqrt{8-2\sqrt{7}-\sqrt{7+2\sqrt{7}+1}}\)

\(=\sqrt{8-2\sqrt{7}-\sqrt{(\sqrt{7}+1)^2}}\)

\(=\sqrt{8-2\sqrt{7}-\sqrt{7}-1}=\sqrt{7-3\sqrt{7}}\)

Bình luận (0)
AH
19 tháng 7 2021 lúc 17:12

Phạm Mạnh Kiên: sửa lại theo ý bạn thì làm như sau:

1.

\(\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}=\sqrt{5+2\sqrt{5}.\sqrt{4}+4}-\sqrt{5-2\sqrt{5}.\sqrt{4}+4}\)

\(=\sqrt{(\sqrt{5}+\sqrt{4})^2}-\sqrt{(\sqrt{5}-\sqrt{4})^2}=|\sqrt{5}+2|-|\sqrt{5}-2|\)

\(=\sqrt{5}+2-(\sqrt{5}-2)=4\)

2.

\(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}\)

\(=\sqrt{(\sqrt{7}-1)^2}-\sqrt{(\sqrt{7}+1)^2}=|\sqrt{7}-1|-|\sqrt{7}+1|\)

\(=-2\)

 

Bình luận (1)
HP
Xem chi tiết
H24
23 tháng 11 2016 lúc 9:08

kieu nay la ko tinh ra ket qua hay so sanh

A=1+C; voi C=5^9/(1+...5^8)=1/(1/5^9+1/5^8+...+1/5)

B=1+D;voi D=3^9/(1+..3^8)=1/(1/3^9+1/3^8+...+1/3)

C=1/E; voi E=(1/5^9+1/5^8+...+1/5)

D=1/f; voi F=(1/3^9+1/3^8+...+1/3)

=> F-E=(1/3-1/5)+...+(1/3^9-1/5^9) >0=> F>E

=> C>D=> A>B

Bình luận (0)
H24
Xem chi tiết
DL
12 tháng 2 2022 lúc 20:49

a,

\(\Leftrightarrow\left(\left(2x^2-4\right)-2\left(x+1\right)^2\right)< 0\)

\(\Leftrightarrow2x^2-4-2\left(x^2+2x+1\right)< 0\)

\(\Leftrightarrow2x^2-4-2x^2-4x-2< 0\)

\(\Leftrightarrow-4x-6< 0\)

\(\Rightarrow x+\dfrac{3}{2}>0\)

\(\Rightarrow x>-\dfrac{3}{2}\)

\(x\in\left\{-\dfrac{3}{2};\infty\right\}\)

Bình luận (0)
DL
12 tháng 2 2022 lúc 20:53

b/

\(\Leftrightarrow\left(x-3\right)^2-5+6x< 0\)

\(\Leftrightarrow x^2-6x+9-5+6x< 0\)

\(\Leftrightarrow x^2+4< 0\) ( điều này vô lý vì không có giá trị nào của x khiến x^2+4<0)

từ trên suy ra:

không có giá trị nào của x để pt này đúng .

 

Bình luận (2)
DL
12 tháng 2 2022 lúc 21:01

c, đưa các hệ số vào công thức bậc 2 ( áp dụng ct bậc 2):

có: \(x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2.a}\)

Với : a=1 ; b=-4 ; c =3

Ta có:

\(x=\dfrac{-1.-4\pm\sqrt{-4^2-4.1.3}}{2.1}\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{4}}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{4+2}{2}\\x_2=\dfrac{4-2}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=3\\x_2=1\end{matrix}\right.\)

tìm khoảng bđt bằng parabol :

 có một dấu bất đẳng thức

\(\Rightarrow1< x< 3\)

 

Bình luận (0)