Tìm GTNN của:\(B=\frac{x^2-2x+2018}{2018x^2},x\ne0\)
Tìm GTNN của biểu thức
A=x^2-2x+2018/2018x^2
Tìm giá trị của x để:
a) Biểu thức \(D=\frac{x^2-2x+2018}{x^2}\left(x\ne0\right)\)đạt GTNN
b) Biểu thức \(E=\frac{-x^2+x-10}{x^2-2x+1}\left(x\ne1\right)\)đạt GTLN
Làm được câu nào thì cmt giúp mình nhé!
\(D=\frac{x^{2}-2x+2018}{x^{2}}\)
\(D=\frac{x^{2}-2*x*1+1+2017}{x^{2}}\)
\(D= \frac{(x-1)^{2}+2017}{x^{2}}\)
Nhận xét: Để D Đặt GTNN thì \((x-1)^{2} + 2017\) Đạt GTNN
Mà \((x-1)^{2} \geq 0\) . Nên:
\((x-1)^{2}+2017\)\(\geq 2017\). GTNN của \((x-1)^{2}+2017=2017 \) Khi x-1=0 => x=1
Thay x=1 vào D
GTNN D=2017
Kết quả 2017
Tìm GTLN hoặc GTNN của
a.\(\frac{2x^2-2x+1}{x^2}\)
b.\(\frac{2018x^2-4x+1}{x^2}\)
Nhanh mik k nha
a.
\(A=\frac{x^2+x^2-2x+1}{x^2}=1+\frac{\left(x-1\right)^2}{x^2}\ge1\)
Giá trị nhỏ nhất của A là 1 khi và chỉ khi x-1=0 <=> x=1
b. \(B=\frac{2014x^2+4x^2-4x+1}{x^2}=2014+\frac{\left(2x-1\right)^2}{x^2}\ge2014\)
Giá trị nhỏ nhất của B là 2014 khi và chỉ khi 2x-1=0 <=> x=1/2
B=\(\frac{x^2-2x+2018}{x^2}\)với \(x\ne0\)
Tìm giá trị nhỏ nhất của B.
\(B=\frac{x^2-2x+2018}{x^2}=\frac{2018x^2-2.2018.x+2018^2}{2018x^2}\)
\(=\frac{x^2-2.2018.x+2018^2}{2018x^2}+\frac{2017x^2}{2018x^2}\)
\(=\frac{\left(x-2018\right)^2}{x^2}+\frac{2017}{2018}\)
\(=\left(\frac{x-2018}{x}\right)^2+\frac{2017}{2018}\)
Vì : \(\left(\frac{x-2018}{x}\right)^2\ge0\forall x\)
Nên : \(B=\left(\frac{x-2018}{x}\right)^2+\frac{2017}{2018}\ge\frac{2017}{2018}\)
Vậy \(B_{min}=\frac{2017}{2018}\) khi x = 2018
\(\Leftrightarrow Bx^2-x^2+2x-2018=0\)
\(\Leftrightarrow\left(B-1\right)x^2+2x-2018=0\)
Để tồn tại x thì \(\Delta^'\ge0\)
\(\Leftrightarrow1+2018\left(B-1\right)\ge0\)
\(\Leftrightarrow B\ge\frac{2017}{2018}\)
Vậy MinB=2017/2018, dấu bằng xảy ra khi x=2018
Cho \(B=\frac{2018x+2019\sqrt{1-x^2}+2020}{\sqrt{1-x^2}}\). Tìm GTNN của B
TXĐ: \(D=\left(-1;1\right)\)
\(B=\frac{2018x+2019\sqrt{1-x^2}+2020}{\sqrt{1-x^2}}\)
\(=\frac{2018x+2020}{\sqrt{1-x^2}}+2019\)
Đặt \(A=\frac{2018x+2020}{\sqrt{1-x^2}}>0\)vì \(-1< x< 1\)
=> \(\sqrt{1-x^2}.A=2018x+2020\)
=> \(\left(1-x^2\right)A^2=2018^2x^2+2.2018.2020x+2020^2\)
<=> \(\left(2018^2+A^2\right)x^2+2.2018.2020x+2020^2-A^2=0\)
pt trên có nghiệm <=> \(\Delta\ge0\)<=> \(\left(2018.2020\right)^2-\left(2018^2+A^2\right).\left(2020^2-A^2\right)\ge0\)
<=> \(A^4-\left(2020^2-2018^2\right)A^2\ge0\)
<=> \(A^2-8076\ge0\)
<=> \(A\ge\sqrt{8076}\)
"=" xảy ra <=> \(x=-\frac{1009}{1010}\left(tm\right)\)
Vậy GTNN của B = \(\sqrt{8076}+2019\) đạt tại \(x=-\frac{1009}{1010}\)
Cho P= \(\frac{x^2}{x^2-2x+1}\div\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)ĐKXĐ:x\ne0;x\ne1\)
a, Rút gọn P
b, Tìm x để P<1c, Tìm GTNN của P khi x>1
Tìm GTNN của:
\(P=\dfrac{x^2-2x+3}{x^2}\left(x\ne0\right)\)
\(P-\dfrac{2}{3}=\dfrac{x^2-6x+9}{3x^2}=\dfrac{\left(x-3\right)^2}{3x^2}\ge0\Rightarrow P\ge\dfrac{2}{3}\).
Dấu "=" xảy ra khi x = 3.
Tìm x biết:
\((5^x+5^{x+1}+5^{x+2}):31=(3^{2x}+3^{2x+1}+3^{2x+2}):13\)
CMR:
\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2018}}+\frac{1}{3^{2019}}-\frac{1}{2}\) là một số âm
Với giá trị nào của x thì biểu thức:
\(M=\frac{2|2018x-2019|+2019}{|2018x-2019|+1}\) đạt giá trị lớn nhất
Cho a+b+c=2019 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{2019}\)
Tính \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{b+a}\)
\(\frac{2\left|2018x-2019\right|+2019}{\left|2018x-2019\right|+1}\)
\(=\frac{\left(2\left(\left|2018x-2019\right|+1\right)\right)+2017}{\left|2018x-2019\right|+1}\)
\(=2+\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất
\(\Rightarrow\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất
\(\Rightarrow\left|2018x-2019\right|+1\)có giá trị nhỏ nhất
Mà \(\left|2018x-2019\right|\ge0\)
\(\Rightarrow\left|2018x-2019\right|+1\ge1\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left|2018x-2019\right|=0\)
\(\Leftrightarrow x=\frac{2019}{2018}\)
Vậy \(M_{MAX}=2019\)tại \(x=\frac{2019}{2018}\)
\(\frac{5^x+5^{x+1}+5^{x+2}}{31}=\frac{3^{2x}+3^{2x+1}+3^{2x+2}}{13}\)
\(\Rightarrow\frac{5^x\left(1+5+5^2\right)}{31}=\frac{3^{2x}\left(1+3+3^2\right)}{13}\)
\(\Rightarrow\frac{5^x\cdot31}{31}=\frac{3^{2x}\cdot13}{13}\)
\(\Rightarrow5^x=3^{2x}\)
Mà \(\left(5;3\right)=1\)
\(\Rightarrow x=2x=0\)
trả lời...............................
ok..................................
hk tốt...............................
Cho biểu thức \(Q=\frac{x^2+2x}{x^2-4x+4}:(\frac{x+2}{x}-\frac{1}{2-x}+\frac{6-x^2}{x^2-2x})\) với \(x\ne0;x\ne\pm2\)
a)Rút gọn A
b) Tìm GTNN của A với x>2
Giúp mình câu b ạ.Câu A rút gọn được \(\frac{x^2}{x+2}\)
Bạn rút gọn sai rồi, mình nhìn đề bài b) cho x>2 thì là biết chắc bạn sai , mình làm lại nhé : ( ĐKXĐ : tự làm )
a) \(Q=\frac{x\left(x+2\right)}{\left(x-2\right)^2}:\left(\frac{\left(x+2\right)\left(x-2\right)+x+6-x^2}{x\left(x-2\right)}\right)\)
\(=\frac{x\left(x+2\right)}{\left(x-2\right)^2}:\frac{x+2}{x\left(x-2\right)}\)
\(=\frac{x\left(x+2\right)}{\left(x-2\right)^2}\cdot\frac{x\left(x-2\right)}{x+2}=\frac{x^2}{x-2}\)
Vậy \(Q=\frac{x^2}{x-2}\)
b) Ta có : \(Q=\frac{x^2}{x-2}=\frac{x^2-4+4}{x-2}=x+2+\frac{4}{x-2}=x-2+\frac{4}{x-2}+4\)
Do \(x>2\Rightarrow x-2>0\) và \(\frac{4}{x-2}>0\)do đó áp dụng BĐT Cô si cho 2 số dương ta được :
\(x-2+\frac{4}{x-2}\ge2\sqrt{\left(x-2\right).\left(\frac{4}{x-2}\right)}=2\cdot\frac{1}{2}=1\)
\(\Rightarrow Q\ge1+4=5\)
Vậy : GTNN của \(Q=5\)
P/s : Ai vào kiểm tra hộ cái :)) Sợ sai lắm nhé, cảm ơn nha 33
Nếu chưa học Cô si thì chứng minh rồi dùng thôi :
Bài này sử dụng Cô - si hai số nên cần chứng minh BĐT :
\(a+b\ge2\sqrt{ab}\left(a,b>0\right)\)
Thật vậy : \(a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )
Do đó \(a+b\ge2\sqrt{ab}\) với a,b >0
Dấu "=" xảy ra \(\Leftrightarrow a=b\)