Cho A=\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{80},CMR:1< A< 2\)
Bài 1: CMR: \(\frac{11}{15}< \frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{59}+\frac{1}{60}< \frac{3}{2}\)\(.\)
Bài 2: Cho các số nguyên dương a,b,c,d.
CTR: \(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
Ai nhanh nhất mình \(tick\)cho!
Đặt \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}\)
=> \(A=\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)\)
Đặt A < (1/40+.....+1/40)+(1/60+1/60+...+1/60)
=>A<1/2+1/3=5/6<3/2
lớn hơn 11/15 cũng tương tự thôi bạn tự làm sẽ thú vị hơn đấy
k minh nha
Cho A=\(\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{58}+\frac{1}{59}.Chứngtỏ\)rằng A<\(\frac{3}{2}\)
ta có
A=1/20 + 1/21+1/22+....+1/59
=(1/20+1/21+...+1/39)+(1/40+1//41+....+1/59)<1/20.20+1/40.20=1 + 1/2=3/2
vậy A<3/2
Chúc bạn học tốt nha ^-^
cho A = \(\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{58}+\frac{1}{59}\)chứng minh A <\(\frac{3}{2}\)
Ta có \(A=\left(\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{39}\right)+\left(\frac{1}{40}+\frac{1}{41}+...+\frac{1}{59}\right)\)
\(A< \left(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)+\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)\)
\(A< \frac{20}{20}+\frac{20}{40}\)
\(A< \frac{3}{2}\)
a)Tính: A=\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+.......+\frac{1}{\sqrt{80}+\sqrt{81}}\)
b)Cho B=\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+.....+\frac{1}{\sqrt{80}}\)
CMR: \(B\ge16\)
Bài 1 : Tính
Cho A =\(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+......+\frac{1}{60}>\frac{7}{12}\)
B = \(\frac{1}{3^2}+\frac{1}{3^2}+\frac{1}{5^2}+......+\frac{ }{50^{21}}\)
CMR B >\(\frac{1}{4}\)và B < \(\frac{4}{9}\)
C = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}.......\frac{79}{80}< \frac{1}{9}\)
dạng 1 : so sánh
a) P = \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2013^2}+\frac{1}{2014^2}\)và Q = \(1\frac{3}{4}\)
dạng 2 : toán chứng minh
1. cho S = \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{130}\)chứng minh rằng : \(\frac{1}{4}< S< \frac{91}{330}\)
2. cho S = \(\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+...+\frac{5}{49}\). CMR : 3 < S < 8
3. CMR : \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2^{1999}}>1000\)
2.a) Vào question 126036
b) Vào question 68660
Cho biểu thức \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+...+\frac{1}{40}\)
Cho \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{100}\)Chứng mainh:\(1< A< \frac{7}{3}\)
ta luôn có 1/80+1/80+....+1/80 < A < 1/35+1/35+......+1/35(cai lày thì khỏi khải thích)
mà A có 80 phân số nên =>1 < A < 16/7 ( lại có16/7 < 7/3 )
=> 1 < A < 7/3
cho A =\(\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+.......+\frac{1}{40}\)cmr \(\frac{1}{2}\)<A<1