Tìm GTLN của \(\frac{x^2+15}{x^2+3}\)
Tìm GTLN của biểu thức:B=\(\frac{x^2+15}{x^2+3}\)
Ta có :
\(B=\frac{x^2+15}{x^2+3}=\frac{x^2+3+12}{x^2+3}=1+\frac{12}{x^2+3}\)
vì x2 \(\ge\)0 \(\Rightarrow\)x2 + 3 \(\ge\)3
\(\Rightarrow\frac{12}{x^2+3}\le4\)
\(\Rightarrow B\le1+4=5\)
Vậy GTLN của B là 5 khi x2 + 3 = 3 hay x = 0
Ta có: \(B=1+\frac{12}{x^2+3}\)
Mà \(x^2+3\ne0\in Z\)
\(\Rightarrow\)Ta có 2 trường hợp
+) x2+3 nguyên dương
\(\Rightarrow\frac{12}{x^2+3}\le12\Rightarrow B\le13\)(1)
+) x2+3 nguyên âm
\(\Rightarrow\frac{12}{x^2+3}< 0\Rightarrow B< 0\)(2)
Từ (1)(2) \(\Rightarrow B\le13\)
\(B=\frac{\left(x^2+15\right)}{x^2+3}\)
\(B=\frac{\left(x^2+3+12\right)}{\left(x^2+3\right)}=1+\frac{12}{\left(x^3+3\right)}\)
B lớn nhất khi \(x=0\Rightarrow B_{MAX}=1+\frac{12}{3}=5\)
tìm GTLN của A=\(\frac{1}{x^2-1}+\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}\)
\(A=\frac{1}{\left(x-1\right)\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}\)
\(2A=\frac{1}{x-1}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}=\frac{1}{x-1}-\frac{1}{x+5}\)
\(2A=\frac{x+5-x+1}{\left(x-1\right)\left(x+5\right)}=\frac{6}{x^2+4x-5}\Leftrightarrow A=\frac{3}{\left(x+2\right)^2-9}\le\frac{3}{-9}=-3\)
Max A = -3 khi x =-2 (TM)
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
Tìm GTLN của \(A=\frac{x^2+15}{x^2+3}\)
\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
TÌM X ĐỂ A=1/2
TÌM GTLN CỦA A
MÌNH CẢM ƠN CÁC BẠN ĐÃ TRẢ LỜI HỘ MÌNH NHA !!!
Cho \(U=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a/ Rút gọn U
b/ Tìm gtln của U và giá trị tương ứng của x
Tìm GTLN hoặc GTNN của biểu thức \(B=\frac{x^2+15}{x^2+3}\)
Tìm GTLN
\(B=\frac{x^2+15}{x^2+3}\)
B=x^2+15/x^2+3.
=>B=(x^2+3+12)/(x^2+3)=1+(12)/(x^2+3)
Để B max=>12/(x^2+3)max
=>12/(x^2+3) >0.
Mà 12>0=>x^2+3>0;(x^2+3)EZ.
Mà x^2 lớn hơn hoặc bằng 0 với mọi xEZ.
=>x^2=0;x^2+3=3.
=>x=0=>B=5.
Vậy Bmax là 5 tại x=0.
k em nha em mới học lớp 6 thôi