Cho \(S=\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+...+\frac{5}{49}\).CMR: 3<S<8
Cho S =\(\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+...+\frac{5}{49}\). Chứng minh : 3<S<8
Chứng minh rằng:
\(3<\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+\frac{5}{23}+...+\frac{5}{49}<8\)
dạng 1 : so sánh
a) P = \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2013^2}+\frac{1}{2014^2}\)và Q = \(1\frac{3}{4}\)
dạng 2 : toán chứng minh
1. cho S = \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{130}\)chứng minh rằng : \(\frac{1}{4}< S< \frac{91}{330}\)
2. cho S = \(\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+...+\frac{5}{49}\). CMR : 3 < S < 8
3. CMR : \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2^{1999}}>1000\)
2.a) Vào question 126036
b) Vào question 68660
Cho S= \(\frac{5}{20}+\frac{5}{21}+...+\frac{5}{49}.\)Chứng tỏ rằng 3< S < 8
Ta có \(S=5.\left(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{49}\right)\)
\(S>5.\left(\frac{1}{49}+\frac{1}{49}+...+\frac{1}{49}\right)\)30 số hạng
\(S>5.\frac{30}{49}\)
\(S>\frac{150}{49}\)
\(S>3\frac{3}{49}\)
Suy ra \(S
Ta có:\(S< \frac{5}{20}+\frac{5}{20}+\frac{5}{20}+...+\frac{5}{20}\)(30 số hạng)
\(=\frac{150}{20}< 8\)
\(\Rightarrow S< 8\left(1\right)\)
Ta lại có:\(S>\frac{5}{50}+\frac{5}{50}+\frac{5}{50}+...+\frac{5}{50}\)(30 số hạng)
\(=\frac{150}{50}=3\)
\(\Rightarrow\)S<3(2)
từ (1) và (2) suy ra điều phải chứng minh
hàng thật nha các bạn không copy nhe!
Cho S=5\20+5\21+5\22+5\23+...+5\49. CMR 3<S<8
Cho S= \(\frac{5}{20}\)+ \(\frac{5}{21}\)+ \(\frac{5}{22}\)+ \(\frac{5}{23}\) + \(\frac{5}{24}\)
Chứng minh S < 1
Mình cần gấp lắm. Giải nhanh mình tick cho ( phải có cách giải )
Sửa đề : Chứng minh : S > 1
Ta thấy : \(\frac{5}{20}>\frac{5}{21}>\frac{5}{22}>\frac{5}{23}>\frac{5}{24}\)
\(\Rightarrow S=\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+\frac{5}{23}+\frac{5}{24}>\frac{5}{24}\times5=\frac{25}{24}>1\)
Vậy S > 1 (ĐPCM)
Cho S= 5/20+5/21+5/22+..+5/49.
CMR 3<S<8
\(S=\frac{5}{20}+\frac{5}{21}+..........+\frac{5}{49}\)
\(=5\left(\frac{1}{20}+\frac{1}{21}+.......+\frac{1}{49}\right)\)
Mà \(\frac{1}{20}>\frac{1}{49};\frac{1}{21}>\frac{1}{49};.........;\frac{1}{49}=\frac{1}{49}\)
\(\Leftrightarrow5\left(\frac{1}{20}+\frac{1}{21}+.....+\frac{1}{49}\right)>5\left(\frac{1}{49}+\frac{1}{49}+.......+\frac{1}{49}\right)\)
\(\Leftrightarrow S>5.\frac{30}{49}\)
\(\Leftrightarrow S>3\frac{3}{49}\)
\(\Leftrightarrow S>3\left(1\right)\)
Lại có :
\(\frac{1}{20}=\frac{1}{20};\frac{1}{21}< \frac{1}{20};.......;\frac{1}{49}< \frac{1}{20}\)
\(\Leftrightarrow S=5\left(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{49}\right)< 5\left(\frac{1}{20}+\frac{1}{20}+....+\frac{1}{20}\right)\)
\(\Leftrightarrow S< 5.\frac{30}{20}=7\frac{1}{2}\)
\(\Leftrightarrow S< 8\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow3< S< 8\)
Cho S=5/20+5/21+5/22+5/23+......+5/49 .CMR:3<S<8
https://olm.vn/hoi-dap/tim-kiem?q=+++++++++++Cho+s=5/20+5/21+5/22+5/23+...+5/49.ch%E1%BB%A9ng+minh+r%E1%BA%B1ng:+3+%3C+s+%3C+8&id=376641
tham khảo nhé bn
https://olm.vn/hoi-dap/tim-kiem?q=Cho+S+=5/20+5/21+5/22+5/23+..........+5/49.+Ch%E1%BB%A9ng+minh+r%E1%BA%B1ng+3%3CS%3C8&id=68660
tham khảo nhé bn
A= 1/20+1/21+1/22+...+1/49
a,CMR:A>\(\frac{3}{5}\)
b, CMR A>\(\frac{3}{2}\)
c, CMR A>\(\frac{23}{30}\)