tìm x thuộc z biết
x. ( x + 3) = 0
( x - 2 ) ( 5 - x ) = 0
( x + 1 ) ( x mũ 2 + 1 ) = 0
Tìm x thuộc Z biết :
a,x.(x+3)=0
b,(x-2).(5-x)=0
c,(x-1).(x mũ 2 +1)=0
a) \(x\left(x+3\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x+3=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
Vậy...
b) \(\left(x-2\right)\left(5-x\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-2=0\\5-x=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2\\x=5\end{cases}}\)
Vậy...
a. X.(X+3)=0 <=> X=0
<=> X+3=0<=> X=-3
b, (X-2)(5-X)=0 <=> X-2=0 <=> X=2
<=> 5-X=0 <=> X=5
c, (X-1)(X2 +1)=0<=> X-1=0 <=> X=1
<=> X2+1=0 <=> X2=-1 <=> Không có giá trị vì Xn ( Nếu n chẵn, giống trường hợp trên ) luôn lớn hơn hoặc bằng 0 ( Không )
a,x.(x+3)=0
<=>x=0
x+3=0
<=>x=0
x=-3
Vậy x=0;x=-3
Câu 1: Tìm số nguyên x;y biết (x - 5) mũ 23 . (y + 2) mũ 7 = 0
Câu 2: Tìm giá trị nhỏ nhất của biểu thức A = (x - 2) mũ 2 + /y + 3/ + 7
Câu 3: Tìm số nguyên x sao cho 5 + x mũ 2 là bội của x + 1
Câu 4: Tìm các số nguyên x;y biết 5 + (x-2) . (y +1) = 0
Câu 5: Tìm x thuộc Z biết x - 1 là ước của x + 2
Câu 6: Tìm số nguyên m để m - 1 là ước của m + 2
Câu 7: Tìm x thuộc Z biết (x mũ 2 - 4) . (7 - x) = 0
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
2. \(A=\left(x-2\right)^2+|y+3|+7\)
Ta có :
\(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\\|y+3|\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x-2\right)^2+|y+3|\ge0\forall x;y\)
\(\Rightarrow\left(x-2\right)^2+|y+3|+7\ge7\forall x;y\)
\(\Rightarrow A\ge7\forall x;y\)
Dấu bằng xảy ra
\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\|y+3|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)
Vậy GTNN của A là 7 khi \(\left(x;y\right)=\left(2;-3\right)\)
Tìm x , y thuộc Z biết :
( 3 mũ x+1 + 3 mũ x ) ÷ 2 = 18
( x+3) mũ 2 + ( x-15 ) mũ 2 = 0
(x+3)^2 + (x-15)^2 = 0
co (x + 3^2) > 0 va (x-15)^2 > 0
=> (x+3)^2 = 0 va (x - 15)^2 = 0
=> x + 3 = 0 va x - 15 = 0
=> x = -3 va x = 15
vay x thuoc tap hop rong :v
Bạn phuong uyen không phải và đâu mà là hoặc đấy chỉ cần 1 trong hai cái =0
Tìm x thuộc z
a ) x ( x+ 3)
a ) (x - 2 ) (5-3)=0
a)(x-1) (x mũ 2 +1)=0
Cho A = ( 5 m mũ 2 - 8 m mũ 2 - 9 m mũ 2 )( -n mũ 3 +4 n mũ 3)
Tìm x , y thuộc Z biết :
( 3 mũ x+1 + 3 mũ x ) : 2 = 18
( x +3 ) mũ 2 + ( y - 15 ) mũ 2 = 0
a) (3x+1 + 3x) : 2 = 18
3x.(3+1) = 36
3x = 9 = 32
=> x= 2
b) (x+3)2 + (y-5)2 = 0
mà \(\left(x+3\right)^2\ge0;\left(y-5\right)^2\ge0.\)
=> x = - 3; y = 5
Tìm x thuộc Z,biết
A)4.(x mũ 2 +1)=0
B) - 2018.(x + 2019)= 0 mũ 2020
a ) 4 . ( x2 + 1 ) = 0
x2 + 1 = 0 : 4
x2 + 1 = 0
x2 = 0 - 1
x2 = - 1
x2 = - 12 => x = - 1
Vậy x = - 1
b ) - 2018 . ( X + 2019 ) = 02020
- 2018 . ( x + 2019 ) = 0
x + 2019 = 0 : ( - 2018 )
x + 2019 = 0
x = 0 - 2019
x = - 2019
Vậy x = - 2019
Tìm y,x,z biết:
a. (x-1) mũ 2+(y-3) mũ 10+(z+4) mũ 100=0
b.|x+3|+|y-5|+|2z-4|=0
a,\(\left(x-1\right)^2+\left(y-3\right)^{10}+\left(z+4\right)^{100}=0\)0(1)
Có \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y-3\right)^{10}\ge0\\\left(z+4\right)^{100}\ge0\end{cases}}\)(2)
Từ (1) và (2)\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-3\right)^{10}=0\\\left(z+4\right)^{100}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-1=0\Rightarrow x=1\\y-3=0\Rightarrow y=3\\z+4=0\Rightarrow z=-4\end{cases}}\)
Em làm tương tự với câu b, không hiểu gì thì hỏi anh
Giải đầy đủ hộ mình nhé :
Bài 1: Tìm x,y,;biết
a, x+y=2
b,y+z=3
c,z+x=-5
Bài 2 : Tìm x,y thuộc Z, biết (x-3).(y+2)=-5
Bài 3 : Tìm a thuộc Z, biết a.(a+2)<0
Bài 4 : Tìm x thuộc Z, sao cho (x2 -4).(x2-10)<0
Bài 5 Tìm x thuộc Z, biết (x2-1).(x2-4)<0
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
bài 1:tìm x thuộc Z biết
a,|x+2|lớn hơn hoặc bằng 5
b,|x+1|>2
bài2 tìm x thuộc Z biết
a,|x-1|-x+1=0
b,|2-x|-2=x
c,|x+7|=|x-9|
bài 3:tìm x thuộc Z biết
a,|x+25|+|-y+5|=0
b,|x-40|+|x-y+10|lớn hơn hoặc bằng 0
Bài 2:
a, |x-1| -x +1=0
|x-1| = 0-1+x
|x-1| = -1 + x
\(\orbr{\begin{cases}x-1=-1+x\\x-1=1-x\end{cases}}\)
\(\orbr{\begin{cases}x=-1+x+1\\x=1-x+1\end{cases}}\)
\(\orbr{\begin{cases}x=x\\x=2-x\end{cases}}\)
x = 2-x
2x = 2
x = 2:2
x=1
b, |2-x| -2 = x
|2-x| = x+2
\(\orbr{\begin{cases}2-x=x+2\\2-x=2-x\end{cases}}\)
2-x = x+2
x+x = 2-2
2x = 0
x = 0
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk