Những câu hỏi liên quan
BQ
Xem chi tiết
PD
22 tháng 11 2017 lúc 12:07

Để chứng minh , ta xét 2 trường hợp

TH1: n là số lẻ

=> (n+8)(n+3)=lẻ x chẵn .( Vì số lẻ cộng với số chẵn ta đc số lẻ , số lẻ cộng với số lẻ ta đc một số chẵn)

Mà số chẵn nào cũng chia hết cho 2

=> (n+8)(n+3) chia hết cho 2.(1)

TH2 : n là số chẵn 

=> (n+8)(n+3)= chẵn x lẻ .(Vì số chẵn cộng với số chẵn ta đc số lẻ , số chẵn cộng với số lẻ ta đc một số lẻ)

Mà số chẵn nào cũng chia hết cho 2

=> (n+8)(n+3) chia hết cho 2.(2)

Từ (1) và (2)

=>(n+8)(n+3) luôn chia hết cho 2 với mọi n thuộc N

Bình luận (0)
LH
24 tháng 7 2018 lúc 20:32

nhan tung ra la xong

Bình luận (0)
TA
Xem chi tiết
NM
10 tháng 5 2022 lúc 14:09

                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bình luận (0)
VL
Xem chi tiết
LQ
Xem chi tiết
ND
19 tháng 11 2015 lúc 20:22

vì 60n chc 30

45 kchc 30nên60n + 45 kchc 30

15 làm tương tự

Bình luận (0)
RM
Xem chi tiết
SK
17 tháng 7 2016 lúc 21:05

a) n có 2 trường hợp

Với n = 2k +1 ( k thuộc Z)

=> (2k+1+6) . (2k+1+7)

= (2k + 7) .( 2k + 8)

= (2k + 7) . 2.(k+4) (chia hết cho 2)      ( 1 )

Với n = 2k

=> (2k + 6) . ( 2k + 7)

= 2. (k+3) . ( 2k + 7)   ( chia hết cho 2)     (2 )

Từ 1 và 2 

=> moi n thuoc Z thi

(n+6)x(n+7) chia het cho 2

Bình luận (0)
SG
17 tháng 7 2016 lúc 21:08

a) + Nếu n lẻ thì n + 7 chẵn => n + 7 chia hết cho 2 => (n + 6).(n + 7) chia hết cho 2

+ Nếu n chẵn thì n + 6 chẵn => n + 6 chia hết cho 2=> (n + 6).(n + 7) chia hết cho 2

=> (n + 6).(n + 7) luôn chia hết cho 2

Nói ngặn gọn hơn là: Do (n + 6).(n + 7) là tích 2 số tự nhiên liên tiếp nên chia hết cho 2

b) n2 + n + 3

= n.(n + 1) + 3

Vì n.(n + 1) là tích 2 số tự nhiên nên chia hết cho 2; 3 không chia hết cho 2

=> n2 + n + 3 không chia hết cho 2

Bình luận (0)
TX
Xem chi tiết
NA
Xem chi tiết

Nếu n là chẵn thì n^2 chẵn và n+3 lẻ => n^2-(n+3) là lẻ => n^-n+3 không chia hết cho 2( n khác 0 vì n thuộc n sao )

Nếu n là lẻ thì n^2 là lẻ và n+3 chẵn => n^2-(n+3) là lẻ => n^2-(n+3) không chia hết cho 2

Bình luận (0)
NK
Xem chi tiết
LH
Xem chi tiết
NS
26 tháng 9 2017 lúc 20:40

Nếu n không chia hết cho 3 thì n:3 dư 1 hoặc dư 2

Nếu n:3 dư 1 thì 2n+1 chia hết cho 3 

Nếu n:3 dư 2 thì n+1 chia hết cho 3 

Suy ra n.(n+1)(2n+1) chia hết cho 3 với mọi n là số tự nhiên

Vậy n.(n+1).(2n+1) chia hết cho 3 với mọi số n

Bình luận (0)