\(\frac{3^2}{2.5}+\frac{3^2}{5.8}+\frac{3^2}{8.11}+\frac{3^2}{11.14}+\frac{3^2}{14.172}\)
1) Tính nhanh:
a) A = \(\frac{3}{2}+\frac{3}{6}+\frac{3}{12}+\frac{3}{20}+....+\frac{3}{90}\)
b) B = \(\frac{2}{2.5}+\frac{2}{5.8}+\frac{2}{8.11}+\frac{2}{11.14}+\frac{2}{14.17}\)
Lưu ý: Dấu chấm là dấu nhân nha mọi người
\(a,A=\frac{3}{2}+\frac{3}{6}+\frac{3}{12}+\frac{3}{20}+...+\frac{3}{90}\)
\(A=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)\)
\(A=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=3.\left(1-\frac{1}{10}\right)\)
\(A=3.\frac{9}{10}=\frac{27}{10}\)
\(b,B=\frac{2}{2.5}+\frac{2}{5.8}+\frac{2}{8.11}+\frac{2}{11.14}+\frac{2}{14.17}\)
\(B.\frac{3}{2}=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}\)
\(B.\frac{3}{2}=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)
\(B.\frac{3}{2}=\frac{1}{2}-\frac{1}{17}\)
\(B=\frac{15}{34}:\frac{3}{2}=\frac{5}{17}\)
Tính : \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}\)
Đặt \(A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}\)
\(A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)
\(A=\frac{1}{2}-\frac{1}{17}\)
\(A=\frac{15}{34}\)
= \(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)= \(\frac{1}{2}-\frac{1}{17}\)=\(\frac{15}{34}\)
Tính nhanh :
B = \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}\)
Tính H=\(\frac{3^2}{1.5}+\frac{3^2}{5.8}+\frac{3^2}{8.11}+\frac{3^2}{11.14}+...+\frac{3^2}{197.200}\)
\(H=\frac{3^2}{2.5}+\frac{3^2}{5.8}+\frac{3^2}{8.11}+\frac{3^2}{11.14}+...+\frac{3^2}{197.200}=3.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{197.200}\right)=3.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{197}-\frac{1}{200}\right)=3\cdot\left(\frac{1}{2}-\frac{1}{200}\right)==\frac{297}{200}\)
Chứng tỏ: \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{14.17}< \frac{1}{2}\)
Ta có: \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{14.17}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{14}-\frac{1}{17}\)
\(=\frac{1}{2}-\frac{1}{17}=\frac{15}{34}\)\(< \frac{17}{34}=\frac{1}{2}\)
\(\Rightarrow\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{14.17}< \frac{1}{2}\)
Vậy:..........................................(đpcm)
Chứng tỏ: \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{14.17}< \frac{1}{2}\)
xét vế trái
ta có:đề\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{14}-\frac{1}{17}\)
\(=\frac{1}{2}-\frac{1}{17}< < \frac{1}{2}\)
vậy vế trái bé hơn \(\frac{1}{2}\)
P/S: \(< < \)là luôn luôn bé hơn nha
k mình nha bạn
Thiengl2015#
Ta có :
\(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{14.17}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{14}-\frac{1}{17}\)
\(=\frac{1}{2}-\frac{1}{17}\)
Mà \(\frac{1}{2}-\frac{1}{17}< \frac{1}{2}\)
Nên \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{14.17}< \frac{1}{2}\left(đpcm\right)\)
\(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{14\cdot17}\)
=\(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{14}-\frac{1}{17}\)
=\(\frac{1}{2}-\frac{1}{17}\)
=\(\frac{17}{34}-\frac{2}{34}\)
=\(\frac{15}{34}\)
Mà \(\frac{1}{2}=\frac{17}{34}>\frac{15}{34}\)
\(\Rightarrowđpcm\)
Tính nhanh:
\(A=\frac{3^2}{2.5}+\frac{3^2}{5.8}+\frac{3^2}{8.11}\)
\(A=\frac{3^2}{2.5}+\frac{3^2}{5.8}+\frac{3^2}{8.11}=3.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}\right)\)
\(=3.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}\right)=3.\left(\frac{1}{2}-\frac{1}{11}\right)\)
\(=3.\left(\frac{11}{22}-\frac{2}{22}\right)=3.\frac{9}{22}=\frac{27}{22}\)
Giải thích dùm mình bài này nha
\(\frac{3}{2.5}\)+\(\frac{3}{5.8}\)+\(\frac{3}{8.11}\)+\(\frac{3}{11.14}\)+\(\frac{3}{14.17}\)
\(\frac{3}{2.5}\)+\(\frac{3}{5.8}\)+\(\frac{3}{8.11}\)+\(\frac{3}{11.14}\)+\(\frac{3}{14.17}\)
=\(\frac{1}{2}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{8}\)+......+\(\frac{1}{14}\)-\(\frac{1}{17}\)
=\(\frac{1}{2}\)-\(\frac{1}{17}\)
=\(\frac{15}{34}\)
=3(1/2-1/5+1/5-1/8+1/8-1/11+1/11-1/14+1/14-1/17)
=3(1/2-1/17)
=3x15/34
=45/34
mk nha
B=\(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{2018.2021}\)
\(B=\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{2018.2021}\)
\(B=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2018}-\frac{1}{2021}\)
\(B=\frac{1}{5}-\frac{1}{2021}\)
\(B=\frac{2016}{10105}\)