Rút gọn biểu thức \(\frac{1}{x-2}\) + \(\frac{x^2-x-2}{x^2-7x-10}\) -\(\frac{2x-4}{x-5}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho biểu thức \(A=\frac{x^2-x}{x^2-4x+4}:\left(\frac{x}{x-1}+\frac{x}{x-2}-\frac{x^2-2x-1}{x^2-3x+2}\right)\)
a)Rút gọn biểu thức A
b)Tìm GTNN của biêu r thức A khi x>2
Bài 1: Cho phân thức: \(\frac{3x^2+6x+12}{x^3-8}\)
Tìm điều kiện của x để phân thức được xác địnhRút gọn phân thức Tính giá trị của phân thức sau khi thu gọn với x = \(\frac{4001}{2000}\) Bài 2: Cho biểu thức sau:
A = \(\left(\frac{1}{x-1}-\frac{x}{1-x^3}.\frac{x^2+x+1}{x+1}\right):\frac{2x+1}{x^2+2x+1}\)
rút gọn biểu thức( không tính cái gạch ở cuối nha)\(\left(\frac{x+1}{2\left(x-1\right)}+\frac{3}{x^2-1}-\frac{x+3}{2\left(x+1\right)}\right)\frac{4x^2-4}{5}\)
\(\left(\frac{x+1}{2\left(x-1\right)}+\frac{3}{x^2-1}-\frac{x+3}{2\left(x+1\right)}\right)\frac{4x^2-4}{5}\)
\(=\left(\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}-\frac{x+3}{2\left(x+1\right)}\right)\frac{4x^2-4}{5}\)
\(=\left[\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{6}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right]\frac{4x^2-4}{5}\)
\(=\left(\frac{x^2+2x+1+6-x^2+x-3x+3}{2\left(x-1\right)\left(x+1\right)}\right)\frac{4\left(x^2-1\right)}{5}\)
\(=\frac{10}{2\left(x-1\right)
\left(x+1\right)}.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(=4\)
Vậy giá trị của biểu thức là 4
Rút gọn biểu thức sau:
2x-1 - \(\frac{\sqrt{\left(x^2-10x+25\right)}}{x-5}\)
ĐKXĐ: \(x\ne5\)
\(2x-1-\frac{\sqrt{x^2-10x+25}}{x-5}\)
\(=2x-1-\frac{\sqrt{\left(x-5\right)^2}}{x-5}\)
\(=2x-1-\frac{\left|x-5\right|}{x-5}\left(1\right)\)
+ Với x > 5 , (1) trở thành : \(2x-1-\frac{x-5}{x-5}=2x-1-1=2x-2\)
+ Với x < 5 , (1) trở thành: \(2x-1-\frac{5-x}{x-5}=2x-1-\left(-1\right)=2x\)
\(2x-1-\frac{\sqrt{x^2-10x+25}}{x-5}\)
\(=2x-1-\frac{\sqrt{\left(x-5\right)^2}}{x-5}\)
\(=2x-1-\frac{x-5}{x-5}\)
\(=2x-1-1\)
=2x-2
=2(x-1)
1.cho biểu thức \(P=\left(\frac{2x+\sqrt{x}}{x\sqrt{x}-1}-\frac{2}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)
a, rút gọn biểu thức P
b,tìm các giá trị của x để biểu thức P có giá trị nguyên
2.. tìm các cặp số nguyên(x;y) thỏa mãn \(x^2+xy-3x-y-5=0\)
3..giải phương trình \(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2+16}\)
Rút gọn biểu thức sau
\(A=\frac{\sqrt{x+2}}{\sqrt{x-3}}-\frac{\sqrt{x+1}}{\sqrt{x-2}}-\frac{3\sqrt{x-3}}{x-5\sqrt{x+6}}\)
Cho biểu thức B=\(\frac{x}{x-1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{^{x^3+1}}\)
a)Rút gọn biểu thức B
b)Chứng minh B luôn dương với mọi x khác 0
Rút gọn biểu thức sau
\(A=\frac{\sqrt{x-3}}{\sqrt{x-2}}-\frac{2\sqrt{x-1}}{\sqrt{x-1}}+\frac{x-2}{x-2\sqrt{x+}2}\)
Cho x>0,y<0 và x+y=1/ Rút gọn biểu thức:
\(A=\frac{y-x}{xy}:\left[\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left(x^2-y^2\right)^2}+\frac{x^2}{x^2-y^2}\right]\)
Chứng minh rằng A<-4
chắc =1 đó chỉ cần đọc kĩ đề thôi