Những câu hỏi liên quan
TL
Xem chi tiết
PT
Xem chi tiết
H24
11 tháng 3 2016 lúc 21:12

mk chưa học cái này

Bình luận (0)
TY
Xem chi tiết
NT
20 tháng 10 2016 lúc 19:43

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có:

\(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bk+b}{dk+d}\right)^2=\left[\frac{b.\left(k+1\right)}{d.\left(k+1\right)}\right]^2=\left(\frac{b}{d}\right)^2\) (1)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}=\left(\frac{b}{d}\right)^2\) (2)

Từ (1) và (2) suy ra \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

Vậy \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

Bình luận (0)
ND
20 tháng 10 2016 lúc 19:56

theo đề bài ta có
\(ab\left(c^2+d^2\right)=ab.c^2+ab.d^2=\left(a.c\right).\left(b.c\right)+\left(a.d\right).\left(b.d\right)\\ cd\left(a^2+b^2\right)=cd.a^2+cd.b^2=\left(c.a\right).\left(d.a\right)+\left(c.b\right).\left(d.b\right)\)
\(\left(a.c\right)\left(b.c\right)+\left(a.d\right)\left(b.d\right)=\left(c.a\right)\left(d.a\right)+\left(c.b\right)\left(d.b\right)\) vì mỗi vế đều bằng nhau
- Cnứng minh \(\frac{\left(a^2+b^2\right)}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
ta có vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{\left(a+b\right)}{\left(c+d\right)}=\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2}{c^2}=\frac{b^2}{d^2}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(a^2+b^2\right)}{\left(c^2+d^2\right)}\)

Bình luận (4)
HD
20 tháng 10 2016 lúc 19:53

Gọi a/b=c/d=k(k khác 0)

Ta có:

a=bk

c=dk

VT:(\(\frac{a+b}{c+d}\))2 =(\(\frac{bk+b}{dk+d}\))2 =(\(\frac{b\left(k+1\right)}{d\left(k+1\right)}\))2 =(\(\frac{b}{d}\))2 (1)

VP:\(\frac{a^2+b^2}{c^2+d^2}\)=\(\frac{b^2k^2+b^2}{d^2k^2+d^2}\)=\(\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}\)=\(\frac{b^2}{d^2}\)=(\(\frac{b}{d}\))2 (2)

Từ (1) và (2) suy ra bằng nhau

Bình luận (0)
DD
Xem chi tiết
PN
3 tháng 1 2016 lúc 11:36

Ta có:

\(a^2+b^2=c^2+d^2\)

nên  \(a^2-c^2=d^2-b^2\)

\(\Leftrightarrow\)  \(\left(a-c\right)\left(a+c\right)=\left(d-b\right)\left(d+b\right)\)  \(\left(1\right)\)

Lại có:   \(a+b=c+d\)   \(\left(2\right)\)

\(\Rightarrow\)  \(a-c=d-b\)

+) Nếu   \(a-c=0\)   \(\Rightarrow\)   \(a=c\)  và   \(d-b=0\)  \(\Rightarrow\)  \(d=b\)  thì  biểu thức  \(a^{2010}+b^{2010}=c^{2010}+d^{2010}\)  

luôn đúng với mọi  \(a;b;c;d\)

+)  Nếu  \(a-c\ne0\)   \(\Rightarrow\)   \(a\ne c\)  và   \(d-b\ne0\)  \(\Rightarrow\)  \(d\ne b\)  thì khi đó biểu thức  \(\left(1\right)\)  trở thành: 

\(a+c=b+d\)  \(\left(3\right)\)

Cộng  \(\left(2\right)\)  và   \(\left(3\right)\)  vế theo vế, ta được:

\(2a+b+c=2d+b+c\)

\(\Rightarrow\)  \(2a=2d\)

\(\Rightarrow\)  \(a=d\)

Từ đây, ta dễ dàng suy ra được   \(b=c\)   (theo  \(\left(2\right);\left(3\right)\)  )  

Vì  \(a=d\)   và   \(b=c\)  nên do đó, biểu thức  \(a^{2010}+b^{2010}=c^{2010}+d^{2010}\) luôn đúng với mọi  \(a;b;c;d\)

Vậy,   ...

Bình luận (0)
PT
Xem chi tiết
H24
18 tháng 12 2016 lúc 19:23

A) Xét tam giác ABH và tam giác ADH có :

HB=HD ( giả thiết)

HA ( cạnh chung)

góc DHA=góc BHA=90độ

suy ra tam giác ABH=tam giác ADH ( C-G-C)

B)Xét tam giác EHD và tam giác BHAcó:

HE=HA( GT)

góc AHB=góc DHE(hai góc đối đỉnh )

HD=HB( GT)

vậy suy ra : tam giácBHA= tam giác EHD( C-G-C)

vậy BA=ED( hai cạnh tương ứng)

C)ta gọi giao điểm của ED và AC là I

ta có góc IEA = góc EAB( hai góc tương ứng)

mà hai góc này lại ở

 vị trí sole  trong ở hai đoạn thẳng BA và EI

suy ra :  BAsong song với EI

mà ta lại có góc BAI = 90 độ mà lại bù nhau với góc EIA vậy góc EIA =180 độ - 90 độ =90 độ

vậy EI vuong góc với AC

Bình luận (0)
HN
Xem chi tiết
NT
5 tháng 3 2020 lúc 9:25

+)Ta có:(-a).(c-d)-d.(a+c)

=(-a)c-(-a).d-da+dc

=(-a)c+ad-da+dc

=(-a).c+dc

=-c.(a+d)  (ĐPCM)

Chúc bn học tốt

Bình luận (0)
 Khách vãng lai đã xóa
LW
5 tháng 3 2020 lúc 9:28

\(VT=-a\left(c-d\right)-d\left(a+c\right)\)

         \(=-ac+ad-ad-cd\)

          \(=-ac-cd\)

           \(=-c\left(a+d\right)=VP\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
BT
Xem chi tiết
NM
8 tháng 9 2021 lúc 10:23

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}\left(1\right)\\ \Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a^3}{c^3}=\dfrac{b^3}{d^3}=\dfrac{a^3+b^3}{c^3+d^3}\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}=\dfrac{a^3+b^3}{c^3+d^3}\\ \Rightarrow\dfrac{a^3+b^3}{\left(a+b\right)^3}=\dfrac{c^3+d^3}{\left(c+d\right)^3}\)

Bình luận (0)
DN
Xem chi tiết
NL
Xem chi tiết
TL
22 tháng 11 2017 lúc 22:43

Chào bạn!

Ta sẽ chứng minh bài toán này theo phương pháp phản chứng

Giả sử \(\left(a;c\right)=m\)\(V\text{ới}\)\(m\in N\)\(m\ne1\)

Khi đó \(\hept{\begin{cases}a=k_1m\\c=k_2m\end{cases}}\)

Thay vào \(ab+cd=p\)ta có : \(k_1mb+k_2md=p\Leftrightarrow m\left(k_1b+k_2d\right)=p\)

Khi đó p là hợp số ( Mâu thuẫn với đề bài)

Vậy \(\left(a;c\right)=1\)(đpcm)

Bình luận (0)
DT
7 tháng 11 2021 lúc 8:53

khó quá

mình cũng đang hỏi câu đấy đây

 

Bình luận (0)