Chứng minh
-a.(c-d)-d.(a+c)=-c.(a+d)
các bạn giải giúp mình với nhé mình cần gấp lắm
Các bạn ơi! Giúp mình giải bài này nha 😄
Giải đúng mình tick cho.
Cho hình bình hành ABCD. Qua D kẻ đường thẳng d sao cho A và C nằm cùng phía với D. Gọi A', B', C' là chân các đường vuông góc kẻ từ A, B, C đến đường thẳng d. Chứng minh rằng AA'+CC'=BB'
Nhanh lên nhé!🙏 Mình cần gấp lắm😥
Cho P(x) = ax^3 + bx^2 + cx +d với a,b,c,d thuộc Z
Biết biểu thức P(x) chia hết cho 5
Chứng minh : a,b,c,d đều chia hết cho 5.
Các bạn ơi , hãy giúp mình nhé, mình đang cần gấp lắm.
Cho tỉ lệ thức a/b=c/d . Chứng minh : (a+b/c+d)^2 = a^2+b^2/c^2+d^2
Các bạn giúp mình gấp nhé ! Mình đang cần . Cám ơn nhiều
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
Ta có:
\(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bk+b}{dk+d}\right)^2=\left[\frac{b.\left(k+1\right)}{d.\left(k+1\right)}\right]^2=\left(\frac{b}{d}\right)^2\) (1)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}=\left(\frac{b}{d}\right)^2\) (2)
Từ (1) và (2) suy ra \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
Vậy \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
theo đề bài ta có
\(ab\left(c^2+d^2\right)=ab.c^2+ab.d^2=\left(a.c\right).\left(b.c\right)+\left(a.d\right).\left(b.d\right)\\
cd\left(a^2+b^2\right)=cd.a^2+cd.b^2=\left(c.a\right).\left(d.a\right)+\left(c.b\right).\left(d.b\right)\)
\(\left(a.c\right)\left(b.c\right)+\left(a.d\right)\left(b.d\right)=\left(c.a\right)\left(d.a\right)+\left(c.b\right)\left(d.b\right)\) vì mỗi vế đều bằng nhau
- Cnứng minh \(\frac{\left(a^2+b^2\right)}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
ta có vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{\left(a+b\right)}{\left(c+d\right)}=\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2}{c^2}=\frac{b^2}{d^2}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(a^2+b^2\right)}{\left(c^2+d^2\right)}\)
Gọi a/b=c/d=k(k khác 0)
Ta có:
a=bk
c=dk
VT:(\(\frac{a+b}{c+d}\))2 =(\(\frac{bk+b}{dk+d}\))2 =(\(\frac{b\left(k+1\right)}{d\left(k+1\right)}\))2 =(\(\frac{b}{d}\))2 (1)
VP:\(\frac{a^2+b^2}{c^2+d^2}\)=\(\frac{b^2k^2+b^2}{d^2k^2+d^2}\)=\(\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}\)=\(\frac{b^2}{d^2}\)=(\(\frac{b}{d}\))2 (2)
Từ (1) và (2) suy ra bằng nhau
cho a,b,c,d thỏa mãn a+b=c+d ; a^2+b^2=c^2+d^2. Chứng minh a^2010+b^2010=c^2010+d^2010
nhờ các bạn giải giùm. Mình cần gấp lắm
Ta có:
\(a^2+b^2=c^2+d^2\)
nên \(a^2-c^2=d^2-b^2\)
\(\Leftrightarrow\) \(\left(a-c\right)\left(a+c\right)=\left(d-b\right)\left(d+b\right)\) \(\left(1\right)\)
Lại có: \(a+b=c+d\) \(\left(2\right)\)
\(\Rightarrow\) \(a-c=d-b\)
+) Nếu \(a-c=0\) \(\Rightarrow\) \(a=c\) và \(d-b=0\) \(\Rightarrow\) \(d=b\) thì biểu thức \(a^{2010}+b^{2010}=c^{2010}+d^{2010}\)
luôn đúng với mọi \(a;b;c;d\)
+) Nếu \(a-c\ne0\) \(\Rightarrow\) \(a\ne c\) và \(d-b\ne0\) \(\Rightarrow\) \(d\ne b\) thì khi đó biểu thức \(\left(1\right)\) trở thành:
\(a+c=b+d\) \(\left(3\right)\)
Cộng \(\left(2\right)\) và \(\left(3\right)\) vế theo vế, ta được:
\(2a+b+c=2d+b+c\)
\(\Rightarrow\) \(2a=2d\)
\(\Rightarrow\) \(a=d\)
Từ đây, ta dễ dàng suy ra được \(b=c\) (theo \(\left(2\right);\left(3\right)\) )
Vì \(a=d\) và \(b=c\) nên do đó, biểu thức \(a^{2010}+b^{2010}=c^{2010}+d^{2010}\) luôn đúng với mọi \(a;b;c;d\)
Vậy, ...
Cho tam giác ABC vuông tại A (AB < AC). Từ A kẻ AH vuông góc với BC tại H. Trên HC lấy điểm D sao cho BH = HD
a) Chứng minh: Tam giác ABH -= ADH
b) Trên tia Ah lấy điểm E sao cho H là trung điểm của AE. Chứng minh: AB = ED
c) Chứng minh: ED vuông góc với AC
( Các bạn giúp mình với nhé, mình đang cần gấp lắm! Bạn nào có cách giải chi tiết, đúng, và nhanh nhất thì mình sẽ tick cho bạn đó. Các bạn làm ơn giúp mình với nhé, càm ơn các bạn nhiều)
A) Xét tam giác ABH và tam giác ADH có :
HB=HD ( giả thiết)
HA ( cạnh chung)
góc DHA=góc BHA=90độ
suy ra tam giác ABH=tam giác ADH ( C-G-C)
B)Xét tam giác EHD và tam giác BHAcó:
HE=HA( GT)
góc AHB=góc DHE(hai góc đối đỉnh )
HD=HB( GT)
vậy suy ra : tam giácBHA= tam giác EHD( C-G-C)
vậy BA=ED( hai cạnh tương ứng)
C)ta gọi giao điểm của ED và AC là I
ta có góc IEA = góc EAB( hai góc tương ứng)
mà hai góc này lại ở
vị trí sole trong ở hai đoạn thẳng BA và EI
suy ra : BAsong song với EI
mà ta lại có góc BAI = 90 độ mà lại bù nhau với góc EIA vậy góc EIA =180 độ - 90 độ =90 độ
vậy EI vuong góc với AC
Chứng minh đăng thức :
-a*( c-d) - d*( a+c) = -c*( a+d)
Giúp mình nhé! Gấp lắm!!!!!!!!!!!!!!!!!!!!!!
Mình sẽ tick cho bạn nòa trả lời nhanh và đúng nhất!Thanks!
+)Ta có:(-a).(c-d)-d.(a+c)
=(-a)c-(-a).d-da+dc
=(-a)c+ad-da+dc
=(-a).c+dc
=-c.(a+d) (ĐPCM)
Chúc bn học tốt
\(VT=-a\left(c-d\right)-d\left(a+c\right)\)
\(=-ac+ad-ad-cd\)
\(=-ac-cd\)
\(=-c\left(a+d\right)=VP\left(đpcm\right)\)
Cho a/b=c/d. Chứng minh a³+b³/(a+b)³=c³+d³/(c+d)³ Các bạn giúp mình với nhé ♡
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}\left(1\right)\\ \Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a^3}{c^3}=\dfrac{b^3}{d^3}=\dfrac{a^3+b^3}{c^3+d^3}\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}=\dfrac{a^3+b^3}{c^3+d^3}\\ \Rightarrow\dfrac{a^3+b^3}{\left(a+b\right)^3}=\dfrac{c^3+d^3}{\left(c+d\right)^3}\)
1. Chứng tỏ :
a). (a - b + c) - (a + c) = -b
b). (a + b) - (b - a) + c = 2a + c
c). - (a + b - c) + (a - b - c) = -2b
d). a(b+ c) - a(b + d) = a(c - d)
e). a(b - c) + a(d + c) = a(b + d)
Mong các bạn giúp mình ! Mình đang cần gấp lắm! Mình xin cảm ơn !
1. CHỨNG MINH RẰNG:
A, VỚI A, B, C, D LÀ CÁC SỐ TỰ NHIÊN KHÁC 0, P NGUYÊN TỐ VÀ AB + CD = P THÌ A , C LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU
GIÚP MÌNH VỚI MÌNH CẦN GẤP LẮM ( AI NHANH VÀ LÀM ĐÚNG MÌNH CHO 1 TICK NHA ) CẢM ƠN CÁC BẠN NHIỀU
Chào bạn!
Ta sẽ chứng minh bài toán này theo phương pháp phản chứng
Giả sử \(\left(a;c\right)=m\)\(V\text{ới}\)\(m\in N\)\(m\ne1\)
Khi đó \(\hept{\begin{cases}a=k_1m\\c=k_2m\end{cases}}\)
Thay vào \(ab+cd=p\)ta có : \(k_1mb+k_2md=p\Leftrightarrow m\left(k_1b+k_2d\right)=p\)
Khi đó p là hợp số ( Mâu thuẫn với đề bài)
Vậy \(\left(a;c\right)=1\)(đpcm)
khó quá
mình cũng đang hỏi câu đấy đây