cho A = 1+1/2+1/3+1/4+...+1/4030
B=1+1/3+1/5+...+1/4029
so sánh A/B với 4031/2016
Cho A=1+1/2+1/3 +1/4+...+1/4030
B=1+1/3+1/5+1/7+...+1/4029
So sanh A/B với 4031/2016
Cho A=1+1/2+1/3 +1/4+...+1/4030
B=1+1/3+1/5+1/7+...+1/4029
So sanh A/B với 4031/2016
Cho A=1+1/2+1/3 +1/4+...+1/4030
B=1+1/3+1/5+1/7+...+1/4029
So sanh A/B với 4031/2016
cho A=\(\frac{1}{1+3}+\frac{1}{1+3+5}+...+\frac{1}{1+3+5+...+4031}\).so sanh A voi \(\frac{2015}{2016}\)
cho A=1*2*3+1/2*3*4+1/3*4*5+...+1/2014*2015*2016.so sánh A với 1/4
A=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2014.2015.2016}\)
A=\(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\right)\)
A=\(\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2015.2016}\right)\)
A=\(\frac{1}{4}-\frac{1}{2015.2016.2}\)\(\Rightarrow A<\frac{1}{4}\)
A = (1 - 1/(2*2)) * (1 - 1/(3*3)) * (1 - 1/(4*4)) ….* (1 - 1/(2016*2016)) .So sánh A với 1/2
Cho A = 1 + 1/2 + 1/3 + ...... +1/4029 + 1/4030 và B = 1 + 1/3 + 1/5 + .... + 1/4027 + 1/4029 .
So sánh A/B với 1 + 2015/2016
so sánh A với 1/2 biết A = ( 1-1/2*2)* (1-1/3*3) * ( 1-1/4*4)* ...* ( 1-1/2016*2016)
A=\(\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.....\frac{2016^2-1}{2016^2}\)
A=\(\frac{\left(2+1\right)\left(2-1\right)}{2^2}.\frac{\left(3+1\right)\left(3-1\right)}{3^2}......\frac{\left(2016+1\right)\left(2016-1\right)}{2016^2}\)
A=\(\frac{3.4......2017}{2.3....2016}.\frac{1.2...2015}{2.3...2016}\)
A=\(\frac{2017}{2}.\frac{1}{2016}\)
A=\(\frac{2017}{2.2106}>\frac{1}{2}\)
Vậy A\(>\frac{1}{2}\)
cho A= 1/2 . 3/4. 5/6 .....2015/2016. hãy so sánh A2 với B = 1/2017