Tìm x để biểu thức sau đạt GTNN , GTLN : \(A=\frac{1}{x^2-3030x+4062241}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 1: Thực hiện các phép tính:
a)
\(\frac{4y^3}{7x^2}.\frac{14x^3}{y}\)
b) \(\frac{x^2-9}{2x+6}:\frac{3-x}{2}\)
Bài 2: Tìm x để biểu thức sau có GTLN, tìm GTLN đó:
\(A=\frac{1}{x^2-3030x+4062241}\)
Bài 1 a)=56x3y3/7x2yy=xy2
a)8xy2
b)\(\frac{x-3}{3-x}\)
Tìm x để biểu thức sau có có giá trị lớn nhất , tìm giá trị lớn nhất đó
\(A=\frac{1}{x^2-3030x+4062241}\)
Tìm x để biểu thức sau có giá trị lớn nhất, tìm giá trị lớn nhất đó :
A = 1/ x^2 - 3030x + 4062241.
\(A=\frac{1}{x^2-3030x+4062241}\)
\(=\frac{1}{x^2-2.x.1515+2295225+1767016}\)
\(=\frac{1}{\left(x-1515\right)^2+1767016}\)
Ta có : \(\left(x-1515\right)^2\ge0\Rightarrow\left(x-1515\right)^2+1767016\ge1767016\)
\(\Rightarrow A=\frac{1}{\left(x-1515\right)^2+1767016}\le\frac{1}{1767016}\)
Dấu "=" xảy ra \(\Leftrightarrow x-1515=0\Leftrightarrow x=1515\)
Tìm x để biểu thức có giá trị lớn nhất , tìm giá trị lớn nhất đó :
A = \(\frac{1}{x^2-3030x+4062241}\)
Ta có: \(A=\frac{1}{x^2-3030x+4062241}\)
\(=\frac{1}{x^2-2.1515x+1515^2+1767016}\)
\(=\frac{1}{\left(x-1515\right)^2+1767016}\)
Ta có: \(\left(x-1515\right)^2\ge0\forall x\)
\(\Rightarrow Max_A=\frac{1}{1767016}\Leftrightarrow x=1515\)
Tìm giá trị của x để A có giá trị lớn nhất:
\(A=\frac{1}{x^2-3030x+4062241}\)
\(A=\frac{1}{x^2-2.1515x+1515^2+1767016}=\frac{1}{\left(x-1515\right)^2+1767016}\le\frac{1}{1767016}\)
Dấu = xảy ra khi x-1515=0
=> x=1515. Vậy...
tìm x,y để biểu thức đạt GTNN và GTNN là bao nhiêu
C=\(\frac{30}{4x-4x^2-6}\)
tìm x,y để biểu thức đạt GTLN và GTLN là bao nhiêu
E=\(\frac{1000}{x^2+y^2-20\left(x+y\right)+2210}\)
\(C=\frac{30}{4x-4x^2-6}=\frac{-30}{4x^2-4x+6}=\frac{-30}{\left(2x-1\right)^2+5}\)
Vì \(\left(2x-1\right)^2\ge0\Rightarrow\left(2x-1\right)^2+5\ge5\Rightarrow\frac{1}{\left(2x-1\right)^2+5}\le\frac{1}{5}\Rightarrow C=\frac{-30}{\left(2x-1\right)^2+5}\ge\frac{-30}{5}=-6\)
Dấu "=" xảy ra khi x=1/2
Vậy Cmin=-6 khi x=1/2
\(E=\frac{1000}{x^2+y^2-20x-20y+2210}=\frac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\)
Vì \(\left(x-10\right)^2\ge0;\left(y-10\right)^2\ge0\Rightarrow\left(x-10\right)^2+\left(y-10\right)^2\ge0\)
\(\Rightarrow\left(x-10\right)^2+\left(y-10\right)^2+2010\ge2010\)
\(\Rightarrow\frac{1}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\frac{1}{2010}\)
\(\Rightarrow E=\frac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\frac{1000}{2010}=\frac{100}{201}\)
Dấu "=" xảy ra khi x=y=10
Vậy Emax = 100/201 khi x=y=10
Ta có: \(E=\frac{1000}{x^2+y^2-20x-20y+2210}=\frac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\)
Vì\(\left(x-10\right)^2\ge0;\left(y-10\right)^2\ge0\Rightarrow\left(x-10\right)^2+\left(y-10\right)^2\ge0\)
\(\Rightarrow\left(x-10\right)^2+\left(y-10\right)^2+2010\ge2010\)
\(\Rightarrow\frac{1}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\frac{1}{2010}\)
\(\Rightarrow E=\frac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\frac{1000}{2010}=\frac{100}{201}\)
Dấu "=" xảy ra khi \(x=y=10\)
Vậy Emax\(=\frac{100}{201}\)khi \(x=y=10\)
tìm x là số nguyên sao cho biểu thức sau đạt GTLN, GTNN(nhớ là tìm GTLN, rồi tìm GTNN sau)
a. A=20-(x+1)^2008
b.B=(x-1)^2+90
Vì (x+1)2008 \(\ge\) 0 với mọi x => - (x+1)2008 \(\le\) 0 => 20 - (x+1)2008 \(\le\) 20 + 0 = 20 với mọi x
=> A lớn nhất bằng 20 khi x+ 1= 0 <=> x = -1
b) Vì (x-1)2 \(\ge\) 0 với mọi x => (x-1)2 + 90 \(\ge\) 0 + 90 = 90 với mọi x
=> B nhỏ nhất = 90 khi x -1 = 0 <=> x = 1
đấy nha, tự trả lời đê, ai bảo nói mk kia
a. Tìm x đẻ biểu thức A=1000 -/x+5/ đạt GTLN.
b. Tìm x để biểu thức B= /x-3/+5 đạt GTNN.
a. x=-5
b. x=3
Thấy đúng tick giùm cái
Giải hộ mik 2 câu này nhé, giải xong nhớ giải thích nữa nha! (Mình kém dạng toán này lắm!)
Bài 1: Tìm x nguyên để các biểu thức sau đạt GTNN:
\(D=\frac{x+5}{\left|x-4\right|}\)
Bài 2: Tìm x nguyên để biểu thức sau đạt GTLN:
\(P=2010-\left(x+1\right)^{2008}\)
Bài 2:
\(P=2010-\left(x+1\right)^{2008}\)
Ta có: \(\left(x+1\right)^{2008}\ge0\forall x\)
\(\Rightarrow2010-\left(x+1\right)^{2008}\le2010\forall x\)
\(P=2010\Leftrightarrow\left(x+1\right)^{2008}=0\Leftrightarrow x=-1\)
Vậy \(x=-1\)thì \(B_{max}=2010\)
Bài 1:
\(D=\frac{x+5}{|x-4|}\)
Ta có: \(|x-4|\ge0\forall x\)
\(\Rightarrow D=\frac{x+5}{|x-4|}=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=1+\frac{9}{x-4}\)
Vì 1 không đổi
Nên để D đạt GTNN thì: \(\frac{9}{x-4}\)phải đạt GTLN
\(\Rightarrow x-4\)phải đạt GTLN
\(\Rightarrow x=13\)
GTNN của \(D=1+\frac{9}{x-4}=1+\frac{9}{13-4}=1+\frac{9}{9}=1+1=2\)
Vậy x=3 thì D đạt GTNN
Bài 2:
\(P=2010-\left(x+1\right)^{2008}\)
Ta có: \(\left(x+1\right)^{2008}\ge0\forall x\)
\(\Rightarrow2010-\left(x+1\right)^{2008}\le2010-0\)
\(\Rightarrow P\le2010\)
\(\Rightarrow\)GTLN của P=2010
\(\Leftrightarrow\left(x+1\right)^{2008}=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy x=-1 thì P đạt GTLN