\(\hept{\begin{cases}\left(m+2\right)x+2y=5\\mx-y=1\end{cases}}\)
Tìm m thuộc Z để nghiệm (x;y) của hệ phương trình là các số nguyên
Cho hệ phương trình:
\(\hept{\begin{cases}\left(m+2\right)x+2y=5\\mx-y-1\end{cases}}\)
tìm m thuộc Z để hệ phương trình có No duy nhất là các số nguyên
a)cho hệ phương trình \(\hept{\begin{cases}x-2y=3-m\\2x+y=3\left(m+2\right)\end{cases}}\)
Gọi nghiệm của hệ phương trình là(x;y)Tìm m để \(x^2+y^2\)đạt GTNN
b)Cho hệ phương trình \(\hept{\begin{cases}mx+y=5\\2x-y=2\end{cases}}\)
Tìm m để hệ phương trình có nghiệm thỏa mãn x+y=1
1)tìm m để hệ phương trình có đúng 2 nghiệm thực phân biệt
\(^{\hept{\begin{cases}x^2+y^2=2\left(1+m\right)\\\left(x+y\right)^2=4\end{cases}}}\)
2)tìm m để hệ phương trình có nghiệm thực x>0,y>0
\(\hept{\begin{cases}x+xy+y=m+1\\x^2y+xy^2=m\end{cases}}\)
Tìm m nguyên để
a, Hệ phương trình \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)có nghiệm thỏa mãn \(x;y\in Z\)
b, Hệ phương trình \(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)có nghiệm thỏa mãn A=xy đạt giá trị lớn nhất.
a/ \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
\(\Rightarrow\left(x+y\right)\left(m+1\right)=3m+1\)
\(\Leftrightarrow\left(x+y\right)=\frac{3m+1}{m+1}=3-\frac{2}{m+1}\)
Vì x, y nguyên nên (m + 1) phải là ước nguyên của 2.
b/ \(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x+my=2m-1\left(1\right)\\y=mx-m^2+2\left(2\right)\end{cases}}\)
\(\Rightarrow\left(2\right)\Leftrightarrow\left(m+1\right)x+m\left(mx-m^2+2\right)=2m-1\)
\(\Leftrightarrow\left(m^2+m+1\right)\left(x-m+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=m-1\\y=2-m\end{cases}}\)
\(\Rightarrow A=\left(m-1\right)\left(2-m\right)=-m^2+3m-2\le\frac{1}{4}\)
alibaba nguyễn có thể làm chi tiết hơn được ko
Tìm giá trị của m để hệ phương trình sau có nghiệm duy nhất
\(\hept{\begin{cases}\left(m+5\right)x+3y=1\\mx+2y=-4\end{cases}}\)
hệ phương trình có 1 nghiệm duy nhất khi a/a' khác b/b'
=>(m+5)/m khác 3/2
=>2m+10 khác 3m
=>m khác 10
TÌm giá trị của m để hệ phương trình sau có nghiệm duy nhất
\(\hept{\begin{cases}\left(m+5\right)x+3y=1\\mx+2y=-4\end{cases}}\)
HPT có nghiệm duy nhất \(\Leftrightarrow\frac{m+5}{m}\ne\frac{3}{2}\Leftrightarrow m\ne10\)
nếu không được dùng công thức như trên, ta có thể làm cụ thể
PT tương đương với :
\(\hept{\begin{cases}2\left(m+5\right)x+6y=2\\3mx+6y=-12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\left(10-m\right)=14\\y=\frac{-4-mx}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{14}{10-m}\\y=\frac{-4-mx}{2}\end{cases}}\)
Để HPT có nghiệm duy nhất thì \(10-m\ne0\Leftrightarrow m\ne10\)
cho Hpt \(\hept{\begin{cases}x+my=m+1\\mx+y=2m\end{cases}}\)
a) giải Hpt khi m = 2
b) tìm m để hpt có nghiệm \(\left(x;y\right)\) TM \(\hept{\begin{cases}x\ge2\\y\ge1\end{cases}}\)
b) \(\hept{\begin{cases}x+my=m+1\left(1\right)\\mx+y=2m\left(2\right)\end{cases}}\)
từ \(\left(2\right)\) ta có: \(y=2m-mx\) \(\left(3\right)\)
thay (3) vào (1) ta được \(x+m\left(2m-mx\right)=m+1\)
\(\Leftrightarrow x+2m^2-m^2x=m+1\)
\(\Leftrightarrow x\left(1-m^2\right)=m+1-2m^2\)
\(\Leftrightarrow x\left(1-m^2\right)=-m^2+1\)
\(\Leftrightarrow x\left(m^2-1\right)=m^2-1\) \(\left(4\right)\)
để hpt có nghiệm duy nhất, pt (4) pải có nghiệm duy nhất
\(\Leftrightarrow m^2-1\ne0\Leftrightarrow m^2\ne1\Leftrightarrow m\ne\pm1\)
từ (4) ta có \(x=\frac{m^2-1}{m^2-1}=1\)
từ (3) ta có: \(y=2m-m\)
\(y=m\)
vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(1;m\right)\)
theo bài ra \(\hept{\begin{cases}x\ge2\\y\ge1\end{cases}}\)
\(\Leftrightarrow m\ge1\)
vậy....
a) khi m = 2 hpt có dạng
\(\hept{\begin{cases}x+2y=3\\2x+y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3-2y\\2\left(3-2y\right)+y=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3-2y\\6-4y+y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}-3y=-2\\x=3-2y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{2}{3}\\x=\frac{5}{3}\end{cases}}\)
vậy....
Cho hpt \(\hept{\begin{cases}\left(m-1\right)x+y=2\\mx+y=m+1\end{cases}}\)
Tìm m để hpt có nghiệm (x;y) thỏa mãn : x+y =4
Bài này lần đầu em gặp, có gì sai góp ý cho em nhé, check hộ em \(\hept{\begin{cases}\left(m-1\right)x+y=2\\mx+y=m+1\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m-1\right)x-mx=1-m\\mx+y=m+1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-m\\m\left(1-m\right)+y=m+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1-m\\m-m^2+y=m+1\end{cases}}\)
\(\left(2\right)\Rightarrow-m^2+y=1\Leftrightarrow y=1+m^2\)
mà : \(x+y=4\)hay \(1-m+1+m^2=4\Leftrightarrow m^2-m-2=0\)
Ta có : \(\Delta=1-4\left(-2\right)=9>0\)
\(m_1=\frac{1-3}{2}=-1;m_2=\frac{1+3}{2}=2\)
TH1 : Thay m = -1 vào hệ phương trình trên ta được
\(\hept{\begin{cases}-2x+y=2\\-x+y=0\end{cases}\Leftrightarrow\hept{\begin{cases}-x=2\\-x+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=-2\end{cases}}}\)
TH2 : Thay m = 2 vào hệ phương trình trên ta được :
\(\hept{\begin{cases}x+y=2\\2x+y=3\end{cases}\Leftrightarrow\hept{\begin{cases}-x=-1\\x+y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=1\end{cases}}}\)
Vậy ...
Giải hệ phương trình:
1.\(\hept{\begin{cases}x^2+y^2+xy=1\\x^3+y^3=x+3y\end{cases}}\)
2.\(\hept{\begin{cases}x+y=\sqrt{4z-1}\\y+z=\sqrt{4x-1}\\z+x=\sqrt{4y-1}\end{cases}}\)
3.\(\hept{\begin{cases}\left(x+y\right)\left(x^2-y^2\right)=45\\\left(x-y\right)\left(x^2+y^2\right)=85\end{cases}}\)
4.\(\hept{\begin{cases}x^3+2y^2-4y+3=0\\x^2+x^2y^2-2y=0\end{cases}}\)
5. \(\hept{\begin{cases}2x^3+3x^2y=5\\y^3+6xy^2=7\end{cases}}\)