Những câu hỏi liên quan
LN
Xem chi tiết
TL
Xem chi tiết
NT
Xem chi tiết
BM
Xem chi tiết
AN
14 tháng 11 2018 lúc 8:50

a/ \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)

\(\Rightarrow\left(x+y\right)\left(m+1\right)=3m+1\)

\(\Leftrightarrow\left(x+y\right)=\frac{3m+1}{m+1}=3-\frac{2}{m+1}\)

Vì x, y nguyên nên (m + 1) phải là ước nguyên của 2.

Bình luận (0)
AN
14 tháng 11 2018 lúc 9:00

b/ \(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x+my=2m-1\left(1\right)\\y=mx-m^2+2\left(2\right)\end{cases}}\)

\(\Rightarrow\left(2\right)\Leftrightarrow\left(m+1\right)x+m\left(mx-m^2+2\right)=2m-1\)

\(\Leftrightarrow\left(m^2+m+1\right)\left(x-m+1\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=m-1\\y=2-m\end{cases}}\)

\(\Rightarrow A=\left(m-1\right)\left(2-m\right)=-m^2+3m-2\le\frac{1}{4}\)

Bình luận (0)
BM
14 tháng 11 2018 lúc 20:34

alibaba nguyễn có thể làm chi tiết hơn được ko

Bình luận (0)
KP
Xem chi tiết
3T
18 tháng 4 2020 lúc 22:43

hệ phương trình có 1 nghiệm duy nhất khi a/a' khác b/b'      

=>(m+5)/m khác 3/2

=>2m+10 khác 3m

=>m khác 10

Bình luận (0)
 Khách vãng lai đã xóa
KP
Xem chi tiết
TD
30 tháng 4 2020 lúc 15:56

HPT có nghiệm duy nhất \(\Leftrightarrow\frac{m+5}{m}\ne\frac{3}{2}\Leftrightarrow m\ne10\)

Bình luận (0)
 Khách vãng lai đã xóa
TD
30 tháng 4 2020 lúc 15:59

nếu không được dùng công thức như trên, ta có thể làm cụ thể 

PT tương đương với :

\(\hept{\begin{cases}2\left(m+5\right)x+6y=2\\3mx+6y=-12\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\left(10-m\right)=14\\y=\frac{-4-mx}{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{14}{10-m}\\y=\frac{-4-mx}{2}\end{cases}}\)

Để HPT có nghiệm duy nhất thì \(10-m\ne0\Leftrightarrow m\ne10\)

Bình luận (0)
 Khách vãng lai đã xóa
AO
Xem chi tiết
H24
13 tháng 2 2018 lúc 15:42

b) \(\hept{\begin{cases}x+my=m+1\left(1\right)\\mx+y=2m\left(2\right)\end{cases}}\)

từ \(\left(2\right)\) ta có: \(y=2m-mx\)  \(\left(3\right)\)

thay (3) vào (1) ta được  \(x+m\left(2m-mx\right)=m+1\)

\(\Leftrightarrow x+2m^2-m^2x=m+1\)

\(\Leftrightarrow x\left(1-m^2\right)=m+1-2m^2\)

\(\Leftrightarrow x\left(1-m^2\right)=-m^2+1\)

\(\Leftrightarrow x\left(m^2-1\right)=m^2-1\)  \(\left(4\right)\)

để hpt có nghiệm duy nhất, pt (4) pải có nghiệm duy nhất  

\(\Leftrightarrow m^2-1\ne0\Leftrightarrow m^2\ne1\Leftrightarrow m\ne\pm1\)

từ (4) ta có  \(x=\frac{m^2-1}{m^2-1}=1\)

từ (3) ta có: \(y=2m-m\)

\(y=m\)

vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(1;m\right)\)

theo bài ra  \(\hept{\begin{cases}x\ge2\\y\ge1\end{cases}}\)

\(\Leftrightarrow m\ge1\)

vậy....

Bình luận (0)
H24
13 tháng 2 2018 lúc 15:50

a) khi m = 2 hpt có dạng 

\(\hept{\begin{cases}x+2y=3\\2x+y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3-2y\\2\left(3-2y\right)+y=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3-2y\\6-4y+y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}-3y=-2\\x=3-2y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{2}{3}\\x=\frac{5}{3}\end{cases}}\)

vậy....

Bình luận (0)
NM
Xem chi tiết
NT
2 tháng 5 2021 lúc 9:32

Bài này lần đầu em gặp, có gì sai góp ý cho em nhé, check hộ em \(\hept{\begin{cases}\left(m-1\right)x+y=2\\mx+y=m+1\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m-1\right)x-mx=1-m\\mx+y=m+1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1-m\\m\left(1-m\right)+y=m+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1-m\\m-m^2+y=m+1\end{cases}}\)

\(\left(2\right)\Rightarrow-m^2+y=1\Leftrightarrow y=1+m^2\)

mà : \(x+y=4\)hay \(1-m+1+m^2=4\Leftrightarrow m^2-m-2=0\)

Ta có : \(\Delta=1-4\left(-2\right)=9>0\)

\(m_1=\frac{1-3}{2}=-1;m_2=\frac{1+3}{2}=2\)

TH1 : Thay m = -1 vào hệ phương trình trên ta được 

\(\hept{\begin{cases}-2x+y=2\\-x+y=0\end{cases}\Leftrightarrow\hept{\begin{cases}-x=2\\-x+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=-2\end{cases}}}\)

TH2 : Thay m = 2 vào hệ phương trình trên ta được : 

\(\hept{\begin{cases}x+y=2\\2x+y=3\end{cases}\Leftrightarrow\hept{\begin{cases}-x=-1\\x+y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=1\end{cases}}}\)

Vậy ... 

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết