Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
PT
Xem chi tiết
H24
Xem chi tiết
VQ
9 tháng 4 2017 lúc 20:21

ko bít

Bình luận (0)
NT
4 tháng 5 2017 lúc 11:33

Bài này dễ ,lớp 6 còn làm đc!

Bình luận (0)
H24
Xem chi tiết
H24
14 tháng 6 2020 lúc 9:40

\(S=1+2+5+14+...+\frac{3^{n-1}+1}{2}\left(n\in N\right)\)

\(2S=2+4+10+28+...+\left(3^{n-1}+1\right)=S_1\)

\(2S=\left[1+1+1+...+n\right]+\left[1+3+9+...+3^{n-1}\right]\)

\(S_1=1+1+1+...+n=n\)

\(S_2=3+9+...+3^n\)

\(3S_2-S_2=2S_2=3^n-1\Rightarrow S_2=\frac{3^n-1}{2}\)

\(S=\frac{S_1+S_2}{2}=\frac{n+\frac{3^n-1}{2}}{2}=\frac{3^n+2n-1}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa
PH
Xem chi tiết
AM
24 tháng 12 2015 lúc 21:26

áp dụng quy tắc 

số số hạng= (số cuối-số đầu) chí cho khoảng cách rồi cộng với 1

Tổng=(số đầu +số cuối ) nhân với số số số hạng rồi chia cho 2

Bình luận (0)
H24
Xem chi tiết
H24
1 tháng 3 2019 lúc 19:38

nhìn cái cuối là biết quy luật đó bạn :))

\(S=\frac{3^{1-1}+1}{2}+\frac{3^{2-1}+1}{2}+\frac{3^{3-1}+1}{2}+...+\frac{3^{n-1}+1}{2}\)

\(S=\frac{\left(3^0+3^1+....+3^{n-1}\right)+\left(1+1+1+...+1\right)}{2}\left(\text{ có n c/s 1}\right)\)

\(S=\frac{\frac{\left(3^n-1\right)}{2}+n}{2}=3^n-1+\frac{n}{2}\)

chỗ 30+31+...+3n-1 bn tự tính :))

Bình luận (0)
KN
Xem chi tiết

\(S=\frac{3^{1-1}+1}{2}+\frac{3^{2-1}+1}{2}+\frac{3^{3-1}+1}{2}+...+\frac{3^{n-1}+1}{2}\)

\(S=\frac{\left(3^0+3^1+3^2+...+3^{n-1}\right)+\left(1+1+1+...+1\right)}{2}\)có n c/s 1

\(S=\frac{\frac{\left(3^n-1\right)}{2}+n}{2}\)

\(=3^n-1+\frac{n}{2}\)

...\(3^0+3^1+3^3+...+3^{n-1}\)bạn tính nha

Bình luận (0)
KN
7 tháng 7 2019 lúc 10:00

Câu hỏi của WINNER - Toán lớp 7 - Học toán với OnlineMath

๖ۣۜƝƘ☆ŤŔầŃ➻❥VăŃ➻❥ŃÁM❖︵copy ở đây

Bình luận (0)
 .
7 tháng 7 2019 lúc 10:03

\(S=1+2+5+14+...+\frac{3^{x-1}+1}{2}\)

\(\Rightarrow2S=2+4+10+28+...+\left(3^{x-1}+1\right)\)

\(\Rightarrow2S=\left[1+1+1+1+...+1\right]+\left[1+3+9+27+...+3^{x-1}\right]\)

Đặt : \(S1=1+1+1+1+...+1=x\)

\(S2=1+3+9+27+...+3^{x-1}\)

\(\Rightarrow3.S2=3+9+27+81+...+3^x\)

\(\Rightarrow3.S2=S2=2.S2=3^x-1\Leftrightarrow S2=\frac{3^x-1}{2}\)

\(\Rightarrow S=\frac{S1+S2}{2}=\frac{x+\frac{3^x-1}{2}}{2}\)

\(\Rightarrow S=\frac{3^x+2x-1}{4}\)

Vậy : \(S=\frac{3^x+2x-1}{4}\)

Bình luận (0)
NC
Xem chi tiết
LC
1 tháng 1 2016 lúc 10:13

Đặt P=31-1+32-1+33-1+34-1+...+3n-1

=>P=30+31+32+33+...+3n-1

=>3.P=31+32+33+34+...+3n

=>3.P-P=31+32+33+34+...+3n-30-31-32-33-...-3n-1

=>2.P=3n-30

=>2.P=3n-1

=>\(P=\frac{3^n-1}{2}\)

Lại có: S=1+2+5+14+...+\(\frac{3^{n-1}+1}{2}\)

=>\(S=\frac{3^{1-1}+1}{2}+\frac{3^{2-1}+1}{2}+\frac{3^{3-1}+1}{2}+\frac{3^{4-1}+1}{2}+...+\frac{3^{n-1}+1}{2}\)

=>\(S=\frac{3^{1-1}+1+3^{2-1}+1+3^{3-1}+1+3^{4-1}+1+...+3^{n-1}+1}{2}\)

=>\(S=\frac{\left(3^{1-1}+3^{2-1}+3^{3-1}+3^{4-1}+...+3^{n-1}\right)+\left(1+1+1+1+...+1\right)}{2}\)

=>\(S=\frac{P+1.n}{2}\)

=>\(S=\frac{\frac{3^n-1}{2}+n}{2}\)

=>\(S=\frac{\frac{3^n-1}{2}+\frac{2n}{2}}{2}\)

=>\(S=\frac{\frac{3^n-1+2n}{2}}{2}\)

=>\(S=\frac{3^n-1+2n}{4}\)

Bình luận (0)
H24
Xem chi tiết

 S = (3^0/2 + 1/2) + (3^1/2 + 1/2) + (3²/2 + 1/2) + (3³/2 + 1/2) +..+ 3^(n-1)/2 + 1/2 

S = n.(1/2) + (1/2)[3^0 + 3^1 + 3² +...+ 3^(n-1)] 

S = n/2 + (3^n - 1)/4 = (3^n + 2n - 1)/4 

mình lớp 5 mong bạn thông cảm và

Bình luận (0)
NT
Xem chi tiết