Những câu hỏi liên quan
H24
Xem chi tiết
NH
3 tháng 8 2016 lúc 15:17

A=5+52+...+599+5100

=(5+52)+...+(599+5100)

=5.(1+5)+...+599.(1+5)

=5.6+...+599.6

=6.(5+...+599) chia hết cho 6 (dpcm)

Ccá câu khcs bạn cứ dựa vào câu a mà làm vì cách làm tương tự chỉ hơi khác 1 chút thôi

Chúc bạn học giỏi nha!!

Bình luận (0)
NL
1 tháng 1 2021 lúc 16:59

\(A=5+5^2+5^3+...+5^{100}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...\left(5^{99}+5^{100}\right)\)

\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)

\(=5.6+5^3.6+...+5^{99}.6\)

\(=6\left(5+5^3+...+5^{99}\right)⋮6\)(đpcm)

\(B=2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=2.31+...+2^{96}.31\)

\(=31\left(2+...+9^{96}\right)⋮31\)(đpcm)

\(C=3+3^2+3^3+...+3^{60}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\)

\(=3.4+3^3.4+...+3^{59}.4\)

\(=4\left(3+3^3+...+3^{59}\right)⋮4\)(đpcm)

\(C=3+3^2+3^3+...+3^{60}\)

\(=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)

\(=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)

\(=3.13+...+3^{58}.13\)

\(=13\left(3+...+3^{58}\right)⋮13\)(đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
A1
Xem chi tiết
LD
12 tháng 5 2016 lúc 19:21

Ta có ; \(A=3+3^2+3^3+.....+3^{100}\)

                \(=\left(3+3^2+3^3+3^4+3^5\right)\)

Bình luận (0)
HT
Xem chi tiết
TP
18 tháng 11 2018 lúc 20:11


 

\(A=\left(2+2^2\right)+...+\left(2^{99}+2^{100}\right)\)

\(A=2\cdot\left(1+2\right)+...+2^{99}\cdot\left(1+2\right)\)

\(A=2\cdot3+...+2^{99}\cdot3\)

\(A=3\cdot\left(2+...+2^{99}\right)⋮3\left(đpcm\right)\)

2 ý kia tương tự

Bình luận (0)
NV
18 tháng 11 2018 lúc 20:13

Giải:

Đặt S=(2+2^2+2^3+...+2^100)

=2.(1+2+2^2+2^3+2^4)+2^6.(1+2+2^2+2^3+2^4)+...+(1+2+2^2+2^3+2^4).296

=2.31+26.31+...+296.31

=31.(2+26+...+296)\(⋮\)31

Bình luận (0)
BQ
18 tháng 11 2018 lúc 20:16

Ta có :

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

=> \(A=(2+2^2)+(2^3+2^4)+...+(2^{99}+2^{100})\)

=> \(A=2(1+2)+2^3(1+2)+...+2^{99}(1+2)\)

=> \(A=2.3+2^3.3+...+2^{99}.3\)

=> \(A=(2+2^3+...+2^{99}).3\)chia hết cho 3             ( 1 )

Ta lại có :

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

=> \(A=2(1+2+2^2+2^3+...+2^{98}+2^{99})\)chia hết cho 2       ( 2 )

Từ ( 1 ) và ( 2 ) ta có :

A chia hết cho 2 . 3 hay A chia hết cho 6

Ta có :

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

=> ​\(A=\left(2+2^2+2^3+2^4+2^5\right)+....\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

=> \(A=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

=> \(A=2.31+...+2^{96}.31\)

=> \(A=\left(2+...+2^{96}\right)31\)chia hết cho 31

Bình luận (0)
BT
Xem chi tiết
NN
Xem chi tiết
NL
12 tháng 1 2019 lúc 20:57

ko biết

Bình luận (0)
MN
Xem chi tiết
ND
23 tháng 9 2015 lúc 14:26

S = 3100 - 1

Bình luận (0)
NP
24 tháng 8 2024 lúc 13:41

Ad cho xin ý kiến vs ạ

Bình luận (0)
DN
Xem chi tiết
NQ
6 tháng 1 2018 lúc 19:56

A = (3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+.....+(3^97+3^98+3^99+3^100)

   = 120+3^4.(3+3^2+3^3+3^4)+.....+3^96.(3+3^2+3^3+3^4)

   = 120+3^4.110+....+3^96.120

   = 120.(1+3^4+.....+3^96) chia hết cho 120

=> ĐPCM

Tk mk nha

Bình luận (0)
HD
6 tháng 1 2018 lúc 19:57

ta co A=(31+32+33+34)+...+(397+398+399+3100)

tớ gợi ý nhiêu đây thôi

Bình luận (0)
PN
Xem chi tiết
AM
2 tháng 7 2015 lúc 8:39

a)B=1+3+32+33+....+399

=(1+3)+(32+33)+...+(398+399)

=4+32.4+....+398.4

=4.(1+32+...+398) chia hết cho 4

Vậy B chia hết cho 4

b)B=1+32+33+34+...+399

=(1+3+32+33)+....+(396+397+398+399)

=40+.........+396.40

=40.(1+....+396) chia hết cho 40

Vậy B chia hết cho 40

Bình luận (0)
PK
2 tháng 7 2015 lúc 8:40

a)B=(1+3)+(32+33)+...+(398+399)

=(1+3)+32(1+3)+....+398(1+3)

=4+32.4+...+398.4

=4(1+32+...+398) chia hết cho4

câu b bạn vận dụng theo câu a là đc bạn nhóm 4 lại nhé mình hơi lười làm

Bình luận (0)
H24
2 tháng 7 2015 lúc 8:46

a)     B=3^0+3^1+3^2+  .............+3^99

=1(1+3)+3^2(1+3)+.................3^98(1+3)

=4+3^2.\(\times4+.............+3^{98}\times4\)

\(=4\left(1+3^2+............3^{98}\right)\)

\(\Rightarrow\)Bchia hết cho 4

Bình luận (0)
DT
Xem chi tiết
H24
1 tháng 9 2017 lúc 20:32

mk biết làm câu a thôi :(

Bình luận (0)
DT
1 tháng 9 2017 lúc 20:38

mình cũng chỉ làm được câu a thôi. hì hì

Bình luận (0)