Những câu hỏi liên quan
H24
Xem chi tiết
NL
Xem chi tiết
NB
20 tháng 11 2019 lúc 14:09

Các cụ cho con bỏ câu này

Bình luận (0)
 Khách vãng lai đã xóa
H24
20 tháng 11 2019 lúc 14:19

đề sai bn nhé

Phải là Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^2 chia 3 dư 1

Đơn giản thôi: 

Xét n=3k=> n^2=9k^2 chia hết cho 3

Xét n=3q+1=> n^2=9q^2+6q+1 chia 3 dư 1 do 9q^2 và 6q chia hết cho 3 và 1 chia 3 dư 1 

Xét n=3p+2 => n^2=9p^2+6p+4 chia 3 dư 1 do 9p^2 và 6p chia hết cho 3 và 4 chia 3 dư 1


Vậy với mọi n thuộc N thì n^2 chia 3 dư 0 hoặc 1.

b) Có mn(m^2-n^2)

=mn(m-n)(m+n)

Nếu m hoặc n chia hết cho 3 thì xong luôn

Nếu m và n cùng dư khi chia cho 3 thì m-n chia hết cho 3

Nếu m và n khác dư khi chia cho 3 (lúc đó m,n ko chia hết cho 3) thì m+n chia hết cho 3

Vậy với mọi m,n thuộc N thì mn(m^2-n^2) chia hết cho 3

Bình luận (0)
 Khách vãng lai đã xóa
NL
12 tháng 9 2021 lúc 15:13

khó.......................................qáu

Bình luận (0)
 Khách vãng lai đã xóa
PA
Xem chi tiết
HN
Xem chi tiết
TL
21 tháng 3 2018 lúc 17:16

- Nhóm khoáng sản kim loại: Wolfram, molipđen, thiếc gốc,...

- Nhóm khoáng sản phi kim loại: Thạch anh tinh thể, cát thuỷ tinh, muối khoáng thạch anh.

- Nguyên liệu sản xuất vật liệu xây dựng: Cát kết vôi, sét phụ gia, đá xây dựng…

Bình luận (2)
HT
Xem chi tiết
H24
16 tháng 11 2019 lúc 22:58

a)

=mn(m-n)(m+n)

Nếu 1 trg 2 số chia hết cho 3=> đpcm

Nếu cả 2 số cùng dư =>m-n chia hết cho 3 (đpcm)

Nếu cả 2 số khác dư (khác dư 0)=> m+n chia hết cho 3(đpcm)

Vậy mn(m^2-n^2) chia hết cho 3

b) Có 2005^2006 lẻ; 2006^2005 chẵn

Nếu n lẻ=> n+2005^2006 chẵn

Nếu n chẵn => n+2006^2005 chẵn

=> đều chia hết cho 2

=> đpcm.

Bình luận (0)
 Khách vãng lai đã xóa
HL
Xem chi tiết
NT
24 tháng 10 2018 lúc 11:33

b)5,03 + 12,48 + 4,97 + 17,52

=(5,03+4,97)+  (12,48+17,52)

=9,90   +   29,90

=39,80

ý a mình ko chắc đâu nhé hình như là lấy (3,45+7,57)+2,46 là xong

Bình luận (0)
LF
Xem chi tiết
KR
30 tháng 4 2018 lúc 19:59

:3 Số 'm' phải là số lẻ nhé cậu 

Ta có : \(1+2+...+2017=\frac{2017.\left(2017+1\right)}{2}=2017.1009\)

Đặt \(S=\left(1^m+2^m+...+2017^m\right)\)

Ta có : \(S=\left(1^m+2017^m\right)+\left(2^m+2016^m\right)+......\)

Do m lẻ nên \(S⋮2018=1009.2⋮1009\)

Vậy \(S⋮1009\)

Mặt khác ta lại có 

\(S=\left(1^m+2^m+...+2017^m\right)=\left(1^m+2016^m\right)+\left(2^m+2015^m\right)+.....+2017^m\)   \(⋮2017\)

=> \(S⋮2017\)

Mà (1009,2017) = 1 

=> \(S⋮2017.1009=......\)

Bình luận (0)
HN
Xem chi tiết