a, tìm số nguyên tố P+10 và P+20 cũng là số nguyên tố
b, tìm ƯCLN ( 3n+2 ; 4-1) (a thuộc N)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a, tìm số nguyên tố P+10;P+20 cũng là số nguyên tố ?
b, tìm UCLN(3n+2;4n -1);(a thuộc N) ?
Tìm số nguyên tố p sao cho:
a) 5p+3 là số nguyên tố
b) p+2; p+10 là các số nguyên tố
a) Với p=2
⇒ 5p+3=13 (TM)
Với p>2
⇒ p=2k+1
⇒ 5p+3=5(2k+1)+3
=10k+8 ⋮2
⇒ là hợp số (L)
Vậy p=2
biết rằng 3n+1 và 5n+4 là 2 số không nguyên tố cùng nhau .tìm ƯCLN của 2 số trênbiết rằng 3n+1 và 5n+4 là 2 số không nguyên tố cùng nhau .tìm ƯCLN của 2 số trên
Câu hỏi tương tự nhé bạn !
UCLN = 7
Tick mình nha
tìm số nguyên tố phong để
a,p+2 và p+10 cũng là số nguyên tố
b,p+10 và p+20 cũng là số nguyên tố
\(a)\)Vì \(p\)là số nguyên tố
\(\Leftrightarrow\)\(p\in\left\{2;3;5;7;...\right\}\)
\(+)\)\(p=2\Leftrightarrow p+2=2+2=4\)( hợp số ) ( loại )
\(+)\)\(p=3\Leftrightarrow\hept{\begin{cases}p+2=3+2=5\\p+3=3+10=13\end{cases}}\)( thỏa mãn )
\(+)\)\(p>3\)mà \(p\)là số nguyên tố nên \(p\)có 2 dạng:
\(+)\)\(p=3k+1\left(k\in N\right)\Leftrightarrow p+2=3k+3⋮3\)( hợp số )
\(+)\)\(p=3k+2\Leftrightarrow p+10=3k+12⋮3\)( hợp số )
Vậy \(p=3\)\(\left(đpcm\right)\)
\(b)\)Với \(p=2\Rightarrow p+10=2+10=12\)( ko là số nguyên tố ) \(\Rightarrow\) ( loại )
Với \(p=3\Rightarrow p+10=3+10=13\)
\(\Rightarrow\)\(p+20=20+3=23\)( đều là các số nguyên tố ) \(\Rightarrow\) ( chọn )
Nếu \(p\)chia cho 3 dư 1 \(\Rightarrow\)\(p=3k+1\left(k\in N\right)\)
\(\Rightarrow\)\(p+20=3k+1+20\)
\(=\)\(3k+21=3\left(k+7\right)⋮3\)
( Vì \(3⋮3;k\in N\Rightarrow k+7\in N\))
\(\Rightarrow\)\(3\left(k+7\right)\)là hợp số ; hay \(p+20\)là hợp số \(\Rightarrow\)( loại )
Nếu \(p\)chia 3 dư 2 \(\Rightarrow\)\(p=3k+2\left(k\in N\right)\)
\(\Rightarrow\)\(p+10=3k+2+10\)
\(=\)\(3k+12=3\left(k+4\right)⋮3\)
( Vì \(3⋮3;k\in N\Rightarrow k+4\in N\))
\(\Rightarrow\)\(3\left(k+4\right)\)là hợp số; hay \(p+10\)là hợp số \(\Rightarrow\)( loại )
Vậy \(p=3\)thỏa mãn đề bài \(\left(đpcm\right)\)
Tìm số nguyên tố p sao cho p+10 và p+20 cũng là số nguyên tố
Tìm số nguyên tố p sao cho p+2 và p+2 cũng là số nguyên tố
Trường hợp p = 2 thì 2^p + p^2 = 8 là hợp số.
Trường hợp p = 3 thì 2^p + p^2 = 17 là số nguyên tố.
Trường hợp p > 3. Khi đó p không chia hết cho 3 và p là số lẻ. Suy ra p chia cho 3 hoặc dư 1 hoặc dư 2, do đó p^2 - 1 = (p - 1)(p + 1) chia hết cho 3. Lại vì p lẻ nên 2^p + 1 chia hết cho 3. Thành thử (2^p + 1) + (p^2 - 1) = 2^p + p^2 chia hết cho 3; suy ra 2^p + p^2 ắt hẳn là hợp số.
Vậy p = 3.
2.
Giả sử f(x) chia cho 1 - x^2 được thương là g(x) và dư là r(x). Vì 1 - x^2 có bậc là 2 nên r(x) có bậc tối đa là 1, suy ra r(x) = ax + b. Từ đó f(x) = (1 - x^2)g(x) + ax + b, suy ra f(1) = a + b và f(-1) = -a + b; hay a + b = 2014 và -a + b = 0, suy ra a = b = 1007.
Vậy r(x) = 1007x + 1007.
3.
Với a,b > 0, dùng bất đẳng thức CauChy thì có
(a + b)/4 >= can(ab)/2 (1),
2(a + b) + 1 >= 2can[2(a + b)].
Dùng bất đẳng thức Bunhiacopski thì có
can[2(a + b)] >= can(a) + can(b);
thành thử
2(a + b) + 1 >= 2[can(a) + can(b)] (2).
Vì các vế của (1) và (2) đều dương nên nhân chúng theo vế thì có
[(a + b)/4][2(a + b) + 1] >= can(ab)[can(a) + can(b)],
hay
(a + b)^2/2 + (a + b)/4 >= acan(b) + bcan(a).
Dấu bằng đạt được khi a = b = 1/4.
a) Nếu P = 2 thì P + 10 = 2 + 10= 12 > 3 và chia hết cho 3 suy ra P + 10 là HS ( loại )
Nếu P = 3 thì+) + 10 = 3 + 10 = 13 > 3 và ko chia hết cho 3 suy ra P + 10 là SNT( chọn)
+) + 20 = 3 + 20 = 23 > 3 và chia hết cho 3 suy ra P + 20 là SNT ( chọn )
Nếu P là SNT > 3 suy ra P có dạng 3k+1, 3k+2
+) Khi P = 3k + 1 thì P + 20 = 3k + 1 + 20 = 3k + 21 = 3.(k + 7) > 3 và chia hết cho 3 suy ra P + 20 là HS ( loại )
+) Khi P = 3k + 2 thì P + 10 = 3k + 2 + 10 = 3k + 12 = 3.(k+4) > 3 và chia hết cho 3 suy ra P + 10 là Hs ( loại )
Vậy P = 3
Đề bài câu b phải là P + 2 và P - 2 nhé!
có bài toán xin hỏi mọi người trả lời giúp, theo mình bài toán này bị sai:
a, Tìm số nguyên tố P sao cho P+4, P+10 là số nguyên tố
b, Tìm số nguyên tố Q sao cho Q+2, Q+8 là số nguyên tố
bài 1 Tìm số nguyên tố x,y
a, 13.x^2-y^2=3
b, x^2=8y+a
bài 2 tìm số nguyên tố p
a,p^q+q^p là sô nguyên tố
b, p^2+2 và p^3+2 là số nguyên tố
giải nhanh hộ mình với 1 bài đc 1 lượt tick
a. tìm 3 số tự nhiên chẵn liên tiếp
b. tìm 3 số lẻ liên tiếp có tích 274365
c.tìm số nguyên tố p sao cho p+2 và p+4 cũng là số nguyên tố
d.tìm số nguyên tố p sao cho p+10 và p+20 cũng là số nguyên tố
Tìm số nguyên tố p;sao cho các số sau cũng là số nguyên tố :
a, p+2 và p+10
b, p+10 và p+20