Những câu hỏi liên quan
FD
Xem chi tiết
AL
11 tháng 1 2021 lúc 21:54

* Nếu p 3 thì p=3(vì p=P)

Khi đó 8p+1=25 là hợp số

*Nếu p 3 dư 1 thì p=3k+1(k N*)

Khi đó 8p+1=8(3k+1)=24k+9  3

Dễ thấy

24k+9 là hợp số {24k+9⋮324k+9>3

Nếu p chia 3 dư 2

Khi đó 8p-1 = 8(3k+2)-1=24k+15

Dễ thấy :24+15 9 {24k+15⋮324k+15>3

=> 8p-1 và 8p+1 không đòng thời là số nguyên tố

Sai không chịu trách nghiệm đâu nha.

Bình luận (0)
 Khách vãng lai đã xóa
H24
11 tháng 1 2021 lúc 21:59

cái này là phải kiểm tra lại nè

sai là chết đó siro official ạ

Bình luận (0)
 Khách vãng lai đã xóa
AL
11 tháng 1 2021 lúc 22:01

Thì lấy trên mạng chớ đâu, tui làm đại, giúp đc thì giúp, ko đc thì thôi hí hí

Bình luận (0)
 Khách vãng lai đã xóa
NB
Xem chi tiết
H24
8 tháng 12 2021 lúc 18:11

Giả sử có 8p-1;8p+1 là SNT

Nếu p = 3 => 8p+1=25 không phải SNT

=> p \(⋮̸3\)

=> 8p  \(⋮̸3\)

Xét 8p-1;8p;8p+1 là 3 số TN liên tiếp

=> Luôn tồn tại 1 số chia hết cho 3 (vô lý)

 

Bình luận (0)
PA
29 tháng 12 2021 lúc 21:36

 Bài này mình chịu

Bình luận (0)
 Khách vãng lai đã xóa
H24
20 tháng 12 2024 lúc 20:34

Khó quá

Bình luận (0)
ST
Xem chi tiết
TL
20 tháng 3 2020 lúc 20:35

Với p=2 => \(\hept{\begin{cases}8p+1=8\cdot2+1=16+1=17\\8p-1=8\cdot2-1=16-1=15\end{cases}}\)

Với p=3 \(\Rightarrow\hept{\begin{cases}8p-1=8\cdot3-1=24-1=23\\8p+1=8\cdot3+1=24+1=25\end{cases}}\)

Nếu p>3 => p có dạng 3k+1 hoặc 3k+2

Với p=3k+1 \(\Rightarrow\hept{\begin{cases}8p-1=8\left(3k+1\right)-1=24k+8-1=24k+7\\8p+1=8\left(3k+1\right)+1=24k+8+1=24k+9\end{cases}}\)

Với p=3k+2 \(\Rightarrow\hept{\begin{cases}8p-1=8\left(3k+2\right)-1=24k+16-1=24k+15\\8p+1=8\left(3k+2\right)+1=24k+16+1=24k+17\end{cases}}\)

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa
PA
29 tháng 12 2021 lúc 21:36

Khó thật 

Bình luận (0)
 Khách vãng lai đã xóa
VN
Xem chi tiết
NL
9 tháng 1 2017 lúc 17:10

Nếu P=2  => 8P-1=8.2-1=15  

                     8P+1=8.2+1=17 (thỏa mãn)

Nếu P=3  =>8P-1=8.3-1=23

                     8P+1=8.3+1=25  (thỏa mãn)

Nếu p>3 thì P=3K+1 hoặc 3K+2

+Với P=3K+1=(8.3K+1-1)=(24K+0)=24k chia hết cho 3(hợp số)

+Với P=3k+2=(8.3k+2+1)=(24k+3) chia hết cho 3 (hợp số)

Vậy 8P+1 và 8P-1 không đồng thời là số nguyên tố.

Bình luận (0)
LL
4 tháng 1 2017 lúc 11:14

xin lỗi bạn mình ko biết vì mình học lớp 5

Bình luận (0)
VN
7 tháng 1 2017 lúc 7:45

Ko biết nên mới hỏi, hỏi rồi cũng như ko!

Bình luận (0)
NN
Xem chi tiết
VA
26 tháng 12 2016 lúc 21:59

Mình không biết nha

Chúc các bạn học giỏi

Tết vui vẻ nha

Bình luận (0)
DD
8 tháng 1 2017 lúc 20:05

8p - 1 va 8p + 1 khong dong thoi la so nguyen to vi:

p la SNT nen p co the = 2 ; 3; 5 ; 7 ; 11;...

8.3 - 1 = 20

8.3 + 1 = 25 va 20, 25 la hop so

Bình luận (0)
TL
Xem chi tiết
PA
11 tháng 12 2017 lúc 19:16

* Nếu p = 3 => 8p-1 = 23: nguyên tố, 8p+1 = 25 là hợp số : thỏa 

* Xét: p # 3 
Thấy: p-1, p, p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3 
p nguyên tố khác 3 nên p-1 hoặc p+1 chia hết cho 3 => (p-1)(p+1) chia hết cho 3 

Vậy: 
(8p-1)(8p+1) = 64p²-1 = 63p² + p² -1 = 3.21p² + (p-1)(p+1) chia hết cho 3 
vì 8p-1 là số nguyên tố lớn hơn 3 => 8p+1 chia hết cho 3, hiển nhiên 8p+1 > 3 
=> 8p+1 là hợp số 
---------- 
Cách khác: 
phân tích: 8p-1 = 9p - (p+1) ; 8p+1 = 9p - (p-1) 
xét 3 số nguyên liên tiếp: p-1, p, p+1 
p và p+1 không thể chia hết cho 3 (xét riêng p = 3 như trên) 
=> p-1 chia hết cho 3 => 8p+1 = 9p - (p-1) chia hết cho 3 

                                k nha

Bình luận (0)
H24
13 tháng 12 2017 lúc 6:52

* Nếu p = 3 => 8p-1 = 23: nguyên tố, 8p+1 = 25 là hợp số : thỏa
* Xét: p # 3
Thấy: p-1, p, p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3
p nguyên tố khác 3 nên p-1 hoặc p+1 chia hết cho 3 => (p-1)(p+1) chia hết cho 3
Vậy:
(8p-1)(8p+1) = 64p²-1 = 63p² + p² -1 = 3.21p² + (p-1)(p+1) chia hết cho 3
vì 8p-1 là số nguyên tố lớn hơn 3 => 8p+1 chia hết cho 3, hiển nhiên 8p+1 > 3
=> 8p+1 là hợp số
----------
Cách khác:
phân tích: 8p-1 = 9p - (p+1) ; 8p+1 = 9p - (p-1)
xét 3 số nguyên liên tiếp: p-1, p, p+1
p và p+1 không thể chia hết cho 3 (xét riêng p = 3 như trên)
=> p-1 chia hết cho 3 => 8p+1 = 9p - (p-1) chia hết cho 3

chúc bn hok  toyó @_@

Bình luận (0)
TN
Xem chi tiết
NL
27 tháng 12 2022 lúc 10:42

tham khảo:

 

Nếu P=2  => 8P-1=8.2-1=15  

                     8P+1=8.2+1=17 (thỏa mãn)

Nếu P=3  =>8P-1=8.3-1=23

                     8P+1=8.3+1=25  (thỏa mãn)

Nếu p>3 thì P=3K+1 hoặc 3K+2

+Với P=3K+1=(8.3K+1-1)=(24K+0)=24k chia hết cho 3(hợp số)

+Với P=3k+2=(8.3k+2+1)=(24k+3) chia hết cho 3 (hợp số)

Vậy 8P+1 và 8P-1 không đồng thời là số nguyên tố.

Bình luận (0)
NN
27 tháng 12 2022 lúc 10:42

Giả sử có 8p-1;8p+1 là SNT

Nếu p = 3 => 8p+1=25 không phải SNT

=> p ⋮/3⋮̸3

=> 8p  ⋮/3⋮̸3

Xét 8p-1;8p;8p+1 là 3 số TN liên tiếp

=> Luôn tồn tại 1 số chia hết cho 3 (vô lý)

 

Bình luận (0)
AH
Xem chi tiết
KN
3 tháng 1 2019 lúc 21:51

Nếu p = 2 thì 8 . 2 - 1 = 15 ( là hợp số )

Nếu p = 3 thì 8 . 3 + 1 = 25 ( là hợp số )

Nếu p > 3 thì ta giả sử 8p -1 ; 8p ; 8p + 1 là ba số tự nhiên liên tiếp chỉ có 1 và chỉ 1 số chia hết cho 3

Mà 8p không chia hết cho 3 nên chỉ có thể 8p - 1 hoặc 8p + 1 

=> Nêu p là số nguyên tố thì 8p - 1 và 8p + 1 không đồng thời là số nguyên tố

Bình luận (0)
HT
Xem chi tiết
NQ
9 tháng 1 2018 lúc 20:48

p = 2 thì 8p-1 = 15 ko nguyên tố

p = 3 thì 8p+1 = 25 ko nguyên tố

p > 3 => p ko chia hết cho 3

+, Nếu p=3k+1 (k thuộc N sao) thì 8p+1 = 24k+8+1 = 24k+9 = 3.(8k+3) chia hết cho 3

Mà 8p+1 > 3 => 8p+1 là hợp số

+, Nếu p=3k+2 thì 8p-1 = 24k+16-1 = 24k+15 = 3.(8k+5) chia hết cho 3

Mà 8p-1 > 3 => 8p-1 là hợp số

Vậy 2 số 8p-1 và 8p+1 ko thể đồng thời là số nguyên tố

Tk mk nha

Bình luận (0)
AA
12 tháng 1 2018 lúc 14:49

hihi... khi sớm cô chữa rùi mà

Bình luận (0)