Tìm GTNN của : E = | x + 2010 | + | x + 2012 |
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm GTNN của B = l x - 2010 l + l x - 2011 l + l x - 2012 l
\(\left|x-2010\right|+\left|x-2012\right|=\left|x-2010\right|+\left|x-2012\right|\ge\left|x-2010-x+2012\right|=2\)
\(\left|x-2011\right|\ge0\)
=> \(B\ge2\)
dấu = xảy ra khi \(\hept{\begin{cases}\left(x-2010\right).\left(-x+2012\right)\ge0\\x=2011\end{cases}}\Rightarrow\hept{\begin{cases}2010\le x\le2012\\x=2011\end{cases}\Rightarrow x=2011}\)
Tìm GTNN của biểu thức
A= / x- 2011/ + /x- 2012/
B= / x- 2010/ + /x- 2011/ + /x - 2012/
C= /x-1/ + / x-2/ +.....+ / x-100/
c, C=|x-1|+|x-2|+...+|x-100|=(|x-1|+|100-x|)+(|x-2|+|99-x|)+...+(|x-50|+|56-x|) \(\ge\) |x-1+100-x|+|x-2+99-x|+...+|x-50+56-x|=99+97+...+1 = 2500
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(100-x\right)\ge0\\\left(x-2\right)\left(99-x\right)\ge0.....\\\left(x-50\right)\left(56-x\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}1\le x\le100\\2\le x\le99....\\50\le x\le56\end{cases}\Leftrightarrow}50\le x\le56}\)
Vậy MinC = 2500 khi 50 =< x =< 56
a. A=|x-2011|+|x-2012|=|x-2011|+|2012-x| \(\ge\) |x-2011+2012-x| = 1
Dấu "=" xảy ra khi \(\left(x-2011\right)\left(2012-x\right)\ge0\Leftrightarrow2011\le x\le2012\)
Vậy MinA = 1 khi 2011 =< x =< 2012
b, B=|x-2010|+|x-2011|+|x-2012|=(|x-2010|+|2012-x|) + |x-2011|
Ta có: \(\left|x-2010\right|+\left|2012-x\right|\ge\left|x-2010+2012-x\right|=0\)
Mà \(\left|x-2011\right|\ge0\forall x\)
\(\Rightarrow B=\left(\left|x-2010\right|+\left|2012-x\right|\right)+\left|x-2011\right|\ge2+0=2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-2010\right)\left(2012-x\right)\ge0\\\left|x-2011\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2010\le x\le2012\\x=2011\end{cases}\Rightarrow}x=2011}\)
Vậy MinB = 2 khi x = 2011
Câu c để nghĩ
tìm gtln gtnn cua x(2010+ can 2012-x^2)
Tính GTNN của B=|x-2010| +|x-2011|+|x-2012|
/x-2010/ + /x-2012/ = /x-2010/ + /2012-x/ >hoặc= /x-2010+ 2012-x/ = /1/ = 1
mà /x-2011/ > hoặc = 0 => B= /x-2010/ + /x-2011/ + /2012-x/ > hoặc = 4 => GTNN của B = 4
=> ( x-2010).(2012-x) > hoặc = 0 và x-2011 = 0
* x-2010 > hoặc = 0 và 2012-x > hoặc = 0 <=> x > hoặc = 2010 và x < hoặc = 2012
=> 2010< hoặc = x < hoặc = 2013 (1)
* ( chỗ này cũng như *trên thôi bạn tự xét trường hợp x-2010 và 2012 -x nhỏ hơn hoặc = 0 nhé => của nó la ko co giá trị x thỏa mãn )
=> x-2011 = 0 => x= 2011 ( thỏa man (1) )
Vậy GTNN của B = 1 KHI x= 2011.
trời ơi mình nhầm / x-2010+2012-x/ = /2/ =2
đổi số 4 thành 2 nhé GTNN của B = 2 KHI x = 2011
thử đi xem đúng ko
Tìm GTNN của \(A=|x-2010|+|x-2011|+|y-2012|+|x-2013|+2014\)
đề có sai ko bn, sao tự nhiên lại có y lạc giữa bầy x
Cho min xin lỗi:
chỗ \(|y-2012|\)sửa thành \(|x-2012|\)
1. Tìm x biết: 2012 = | x-2010 | + | x-2008 |
2. Cho A = | x-2010 | + | x-2012 | | x-2014 |
Tìm x để A đạt GTNN
Cho 3 số x;y;z thoả mãn x+y+z=0;-1<x;y;z<1
Tìm GTNN GTLN của P=x2008+y2010+z2012
Tìm GTNN của \(E=\frac{x}{\left(x+2010\right)^2}\)
Tìm GTLN hoặc GTNN của
a, A= -2018/x2-10x+2012
b, E= |x+11|+|x+17|+|2018+x|
\(A=\frac{-2018}{x^2-10x+2012}\)
ta có:\(x^2-10x+2012=x^2-2.x.5+5^2+1987=\left(x-5\right)^2+1987\ge1987\)vì (x-5)2\(\ge\)0)
dấu = xảy ra khi x-5=0
=> x=5
vì tử thức âm mà mẫu thức luôn lớn hơn 0
=> E đạt giá trị nhỏ nhất khi mẫu thức nhỏ nhất
khi đó Min A=\(-\frac{2018}{1987}\)đạt tại x=5