Tim so nguyen n, biet :
2n^2-1 chia het cho n+1
Giup minh nha !!!
tim so nguyen n
a)n+7 chia het cho n +2
b) 9-n chia het cho n-3
c)n^2 +n+17 chia het cho n +1
d) n ^ 2 +25 chia het cho n+2
e) 2n+7 chia het cho n+1
g)3n ^2 +5 chia het cho n -1
h) 3n+7 chia het cho 2n+1
i)2n^2 +11 chia het cho 3n+1
giup minh nha mai minh phai nop roi
a.n + 7 chia hết cho n+2
=> n + 2 + 5 chia hết cho n+2
=> 5 chia hết cho n+2
=> n + 2 thuộc tập hợp các số : 5;-5;1;-1
=> n thuộc tập hợp các số : 3;-7;-1;-3
b.9-n chia hết cho n-3
=> 6 - n - 3 chia hết cho n-3
=> 6 chia hết cho n-3
=> n -3 thuộc tập hợp các số : 1;-1;6;-6
=> n thuộc tập hợp các sô : 4;2;9;-3
Giải hết ra dài lắm
k mk nha
Tim so nguyen n , biet :
2n^2-1 chia het cho n+1
Giup minh nhe
Tim n , biet :
2n^2-1 chia het cho n+1
giup minh nha !!!
Có 2n^2-1 chia hết cho n +1
Mà 2(n+1) chia hết cho n +1
2n+2 chia hết cho n +1
Hay 2n+2-3 chia hết cho n+1
=> 3 chia hết cho n +1
n+1 thuộc ước của 3 = -3;-1;1;3
n = -4;-2;0;2
(Nếu n thuộc N thì bỏ 2 trường hợp đầu nha)
Vậy n = -4;-2;0;2
giup minh bai nay nha!
tim so tu nhien n biet:
A, 3n + 7 chia het cho n+2
B, 6n +7 chia het cho 2n+1
C, 3n^3 n^2+4 chia het cho 3n+1
D, 3n^3 + 10n^2 - 5 chia het cho 3n+1
B,
6n+7 = 6n + 3 +4= 3(2n+1)+4 chia hết cho 2n + 1
Suy ra 4 chia hết cho 2n + 1 Suy ra 2n +1 thuộc Ư (4)) và n là số lẻ
Ư (4) ={ 1;2;4}
Vì n là số lẻ nên
2n + 1 =1
2n =1-1
2n =0
n = 0 : 2 =0
Vậy n =0
A3n+7 chia het cho n+2
3n-12+5 chia het cho n+2
(3n-12)+5 chia het cho n+2
3(n-4)+5 chia het cho n+2
=>5 chia het cho n+2
=>n+2 thuoc (U)5={1;-1;5;-5}
Neu:n+2=1=>n=-1(loai)
Neu:n+2=-1=>n=-3(loai)
Neu:n+2=5=>n=3
Neu:n+2=-5=>n=-7(loai)
Vay:n=3
tim so nguyen n biet
6n - 4 chia het cho 2n + 1
3 - 2n chia het cho n + 1
tim so nguyen n biet
3n - 2 chia het cho 2n - 1
n + 3 chia het cho n - 4
tim so nguyen n biet (n-7) chia het cho (2n+1)
Lời giải:
$n-7\vdots 2n+1$
$\Rightarrow 2(n-7)\vdots 2n+1$
$\Rightarrow 2n+1-15\vdots 2n+1$
$\Rightarrow 15\vdots 2n+1$
$\Rightarrow 2n+1\in \left\{\pm 1; \pm 3; \pm 5; \pm 15\right\}$
$\Rightarrow n\in \left\{0; -1; 1; -2; 2; -3; 7; -8\right\}$
cho a va b la hai so tu nhien. biet a chia cho 5 du 1 ; b chia cho 5 du 4. chung minh (b-a)(b+a) chia cho 4
chung minh 2n^2(n+1)-2n(n^2+n-3) chia het cho 6 voi moi so nguyen n
chung minh n( 3-2n)-(n-1)(1+4n)-1 chia het cho 6 voi moi so nguyen n
1. a là số tự nhiên chia 5 dư 1
=> a = 5k + 1 ( k thuộc N )
b là số tự nhiên chia 5 dư 4
=> b = 5k + 4 ( k thuộc N )
Ta có ( b - a )( b + a ) = b2 - a2
= ( 5k + 4 )2 - ( 5k + 1 )2
= 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )
= 25k2 + 40k + 16 - 25k2 - 10k - 1
= 30k + 15
= 15( 2k + 1 ) chia hết cho 5 ( đpcm )
2. 2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2n2 + 6n
= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )
3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1
= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1
= 3n - 2n2 - 4n2 + 3n + 1 - 1
= -6n2 + 6n
= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )
Tim so tu nhien n sao cho:n+2 chia het cho 2n-1
Can gap lam giai nhanh giup minh nha