cho x và y là các số nguyên dương thõa mãn x+2y/x+y=2016/2015
cho x và y là các số nguyên dương thõa mãn \({x+2y \ \over x+y}\) = \( {2016 \ \over 2015}\)
cho x và y là các số nguyên dương thỏa mãn 2x+y/x+y=2016/2015 tìm giá trị nhỏ nhất của y
Cho x và y là các số nguyên dương thỏa mãn:2x+y/x+y=2016/2015
giúp với
trước ngày 5/2 nha
Ta có : \(\frac{2x+y}{x+y}=\frac{2016}{2015}\)
\(\Rightarrow\frac{x+y+x}{x+y}=\frac{2015+1}{2015}\)
\(\Rightarrow1+\frac{x}{x+y}=1+\frac{1}{2015}\)
\(\Rightarrow\frac{x}{x+y}=\frac{1}{2015}\)
\(\Rightarrow2015x=x+y\)
\(\Rightarrow y=2014x\)
Vậy \(y=2014x\)
ê thằng nam khánh
1)Tìm tất cả các cặp số nguyên x,y thỏa mãn : x2=y(y+1)(y+2)(y+3)
2)Cho các số nguyên x,y,z thỏa mãn S=x+2y+3z+2016 và P=(x+2015)5+(2y-2016)5+(3z+2017)5
Mk đang cần gấp . Mơn mấy thím trc
câu 1 tìm x,y nguyên dương thõa mãn xy+x-y=4
câu 2: cho x,y,z là số nguyên dương và x+y+z là số lẻ các số thực a,b,c thõa mãn \(\frac{a-b}{x}=\frac{b-c}{y}=\frac{c-a}{z}\)chứng minh rằng a=b=c
Câu 1: xy + x - y = 4
<=> (xy + x) - (y+ 1) = 3
<=> x(y+1) - (y + 1) = 3
<=> (y + 1) (x - 1) = 3
Theo bài ra cần tìm các số nguyên dương x, y => Xét các trường hợp y + 1 nguyên dương và x -1 nguyên dương.
Mà 3 = 1 x 3 => Chỉ có thể xảy ra các trường hợp sau:
* TH1: y + 1 = 1; x - 1 = 3 => y = 0; x = 4 (loại vì y = 0)
* TH2: y + 1 = 3; x -1 = 1 => y = 2; x = 2 (t/m)
Vậy x = y = 2.
Câu 2:
Ta có:
(a - b)/x = (b-c)/y = (c-a)/z =(a-b + b -c + c - a) (x + y + z) = 0
Vì x; y; z nguyên dương => a-b =0; b - c = 0; c- a =0 => a = b = c
\(\frac{a-b}{x}=\frac{b-c}{y}=\frac{c-a}{z}\)
tìm x y là các số thõa mãn : 2x² + 2y² - 2xy +2x+2y+2 =0
tìm a , biết x^2016 + a chia hết x-1
2x2 + 2y2 -2xy+2x+2y+2=0
<=>x2-2xy+y2+x2+2x+1+y2+2y+1=0
<=>(x-y)2+(x+1)2+(y+1)2=0
<=>x=-1;y=-1
còn x2016+a chia hết cho x-1 khi a =-1.đúng chuẩn
\(\text{1 . 2016}^z\text{ + 2017}^y\text{ = 2018}^x\)
\(\text{TH1 : z = 0}\)
\(\Rightarrow2016^0+2017^y=2018^x\)
\(\Rightarrow1+2017^y=2018^x\)
\(\Rightarrow y=1;x=1\)
\(\text{TH2 : y = 0 }\)
\(\Rightarrow2016^z+2017^0=2018^x\)
\(\Rightarrow2016^z+1=2018^x\)
\(\text{Vế trái là số lẻ khi x }\ge1\)
\(\text{Vế phải là số chẵn khi x }\ge1\)
\(\Rightarrow\text{TH2 bị loại}\)
\(\text{TH3 : }x,y,z\ne0\)
\(\Rightarrow2016^z+2017^y\text{ là số lẻ}\)
\(\Rightarrow2018^x\text{ là số chẵn}\)
\(\Rightarrow\text{TH3 bị loại}\)
\(\text{Vậy z = 0 ; y = 1 ; x = 1}\)
Mấy bn giải giúp mh Thanks nhiều!
Tìm các số nguyên x và y thỏa mãn: x^2015+x^2016+2015^2016=y^2016+y^2017+2016^2017
Cho x,y,z là các số thực dương thõa mãn x+y+z=3.Tìm GTNN của P=x4+2y4+3z4