Cho a là số nguyên .chứng minh |a|<5 <=> -5<a<5
Cho a=P!, trong đó P là số nguyên tố
Chứng minh rằng a+1 là số nguyên tố
Chứng minh rằng a+2, a+3, a+4, a+5,............, a+k đều là số nguyên tố
1 Cho số tự nhiên n với n > 2. Biết 2n - 1 là 1 số nguyên tố. Chứng tỏ rằng số 2n + 1 là hợp số
2 Cho 3 số: p, p+2014.k, p+2014.k là các số nguyên tố lớn hơn 3 vá p chia cho 3 dư 1. Chứng minh rằng k chia hết cho 6
3 Cho 2 số tự nhiên a và b, trong đó a là số lẻ. Chứng minh rằng 2 số a và a.b+22013là 2 số nguyên tố cùng nhau
4 Cho m và n là các số tự nhiên, m là số lẻ. Chứng tỏ rằng m và mn+8 là 2 số nguyên tố cùng nhau
5 Cho A=32011-32010+...+33-32+3-1. Chứng minh rằng a=(32012-1) : 4
6 Cho số abc chia hết cho 37. Chứng minh rằng số bca chia hết cho 37
a) Chứng minh rằng (n+2).(n+9) chia hết cho 49
b) Cho hai số a và b nguyên tố cùng nhau. Chứng minh rằng a.b và a+b của chúng cũng nguyên tố cùng nhau
c) Chứng minh số abcabc( abcabc là một số) là bội của 77
d) Chứng tỏ số aaaaaa là bội số của 3003
Cho a,b,c,d là bốn số nguyên dương, chứng minh a/b+c+d + b/a+c+d + c/a+b+d + d/a+b+c không phải là số nguyên (chứng minh nó bé hơn hai thôi cũng được)
cho a là số nguyên tố(a>2); a+k;a+2k là các số nguyên tố. chứng minh k chia hết cho 6
Cho a;b là các số nguyên dương sao cho (a;b)=1. Chứng minh rằng N0=ab−a−bN0=ab−a−b là số nguyên lớn nhất không biểu diễn được dưới dạng ax+by với x;y là các số nguyên không âm.
Mở rộng: Chứng minh giữa 2 số nguyên n, N0−nN0−n, có đúng một trong hai số biểu diễn được dưới dạng ax+by với x, y là các số nguyên không âm.(Định lý Sylvester tem thư)
Chứng minh cụ thể giùm mình nha
Cho a là số nguyên tố ( a > 2 ) ; a + k ; a + 2k là các số nguyên tố. Chứng minh k chia hết cho 6
Cho a là số nguyên tố ( a > 2 ) ; a + k ; a + 2k là các số nguyên tố. Chứng minh k chia hết cho 6
Xét trong phép chia cho 2 và cho 3 bạn ạ :))
https://olm.vn/thanhvien/mauhyun2014@gmail.com
Bạn có thể tham khảo bài này ở link trên.
CHÚC BẠN HỌC TỐT!
Cho a là số nguyên. Chứng minh M=(a+1)(a+2)(a+3)(a+4)+1 là bình phương của một số nguyên
\(M=\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)+1\)
\(=\left(a+1\right)\left(a+4\right)\left(a+2\right)\left(a+3\right)+1\)
\(=\left(a^2+5a+4\right)\left(a^2+5a+6\right)+1\)
\(=\left(a^2+5a+4\right)^2+2\left(a^2+5a+4\right)+1\)
\(=\left(a^2+5a+5\right)^2\) là bình phương của 1 số nguyên (đpcm)
M=(x+1)(x+4)(x+2)(x+3)+1
=(x2+5x+4)(x2+5x+6)+1
dat x2+5x+5=a ta co
M=(a+1)(a-1)+1
=a2-1+1
=a2
thay a boi x2+5x+5 ta co M=(x2+5x+5)2 (1)
ma x la so nguyen nen x2+5x+5 la so nguyen (2)
tu (1) va (2) thi M la binh phuong cua 1 so nguyen