chứng minh rằng 16n-15n-1 chia hết cho 225
Chứng minh rằng 16n - 15n - 1 chia hết cho 225 ( với n thuộc N* )
Chứng minh:16n-15n-1 chia hết cho 225 với mọi n thuộc N*
Chứng minh rằng:
a. 1110 - 1 chia hết cho 100
b. 9 . 10n + 18 chia hết cho 27
c. 16n - 15n - 1 chia hết cho 255
Chứng minh rằng 16n - 15n - 1 chia hết cho 225 ( với n thuộc N* )
1 cm rằng
16^n-15n-1 chia hết cho 225
2 cm rằng
1890^1930+1945^1975+1 chia hết cho 7
3 tìm tất cả các số tự nhiên n để
2^n-1 chia hết cho 7
4 chứng minh rằng với mọi số tự nhiên n thì 2^n+1 chia hết cho 7
Chứng minh 16n - 15n -1 chia hết cho 225
Các bn giúp mk nhé mai mk fai np zồi
16^n - 15n - 1 =16^n-15n-1
= 15 .[ (16^(n-1)+16^(n-2)+...+1] - 15n
=15 . [ 16^(n-1)+16^(n-2)+...+1-n]
=15 .{ [ 16^(n -1)]+[16^(n-2) -1]+...+(16-1)}
Ta có : 16^(n-1) -1\(⋮\)15
16^(n-2) -1\(⋮\)15
.....
16 -1 \(⋮\)15
=>[16^(n-1) -1]+[16^(n-2) -1]+...+(16-1) =15k (k\(\in\)N)
=>16^n-15n-1 = 15 . 15k = 225 k\(⋮\)225
(đpcm)
Chứng minh rằng :4^n+15n-1 chia hết cho 9
Dùng phương pháp quy nạp toán học em nhé.
Với n = 1 ta có: 41 + 15.1 - 1 = 18 ⋮ 9 ( đúng)
Giả sử 4n + 15n - 1 ⋮ 9 với n = k (kϵ N)
Ta cần chứng minh 4n + 15n - 1 ⋮9 với n = k + 1
⇔ 4k+1 + 15(k+1) - 1 ⋮ 9
Thật vậy ta có:
4k + 15k - 1 ⋮ 9 ( theo giả thuyết)
⇔ 4.( 4k + 15k - 1) ⋮ 9
⇔ 4k+1 + 60k - 4 ⋮ 9
⇔ 4k+1 + 15k + 45k + 15 - 1 - 18 ⋮ 9
⇔ 4k+1 + 15k + 15 - 1+ 45k - 18 ⋮ 9
⇔ 4k+1 + 15(k+1) - 1 + 45k - 18 ⋮ 9
⇔ 4k+1 + 15(k+1) - 1 ⋮ 9 ( đpcm)
Vậy 4n + 15n - 1 ⋮ 9 ∀ n ϵ N
Chứng minh với n là số tự nhiên thì
a) \(2^{4n}-1\)chia hết cho 15
b) \(16^n-15n-1\)chia hết cho 225
a) Với \(n\in N\Rightarrow2^{4n}-1=16^n-1=\left(16-1\right).\left(16^{n-1}+16^{n-2}+...+1\right)\)
\(=15.\left(16^{n-1}+16^{n-2}+...+1\right)⋮15\)
b) Với \(n\in N\Rightarrow16^n-15n-1=\left(16^n-1\right)-15n\)
mà \(\left(16^n-1\right)⋮15\left(cma\right);15n⋮15\)
\(\Rightarrow16^n-15n-1⋮15\)
Chứng minh rằng với n ∈ N * : 4 n + 15 n – 1 chia hết cho 9
4n + 15n – 1 chia hết cho 9
Đặt An = 4n + 15n – 1
với n = 1 ⇒ A1 = 4 + 15 – 1 = 18 chia hết 9
+ giả sử đúng với n = k ≥ 1 nghĩa là:
Ak = (4k + 15k – 1) chia hết 9 (giả thiết quy nạp)
Ta cần chứng minh: Ak + 1 chia hết 9
Thật vậy, ta có:
Ak + 1 = 4k+1 + 15(k + 1) – 1
= 4.4k + 15k + 15 – 1
= 4.(4k + 15k – 1) – 45k+ 4+ 15 – 1
= 4.(4k +15k- 1) – 45k + 18
= 4. Ak + (- 45k + 18)
Ta có: Ak⋮ 9 và ( - 45k+ 18) = 9(- 5k + 2)⋮ 9
Nên Ak + 1 ⋮ 9
Vậy 4n + 15n – 1 chia hết cho 9 ∀n ∈ N*