Những câu hỏi liên quan
NA
Xem chi tiết
LN
Xem chi tiết
NL
Xem chi tiết
NA
Xem chi tiết
QN
Xem chi tiết
NH
Xem chi tiết
LL
4 tháng 12 2017 lúc 20:35

16^n - 15n - 1 =16^n-15n-1

= 15 .[ (16^(n-1)+16^(n-2)+...+1] - 15n 

=15 . [ 16^(n-1)+16^(n-2)+...+1-n]

=15 .{ [ 16^(n -1)]+[16^(n-2) -1]+...+(16-1)}

Ta có :   16^(n-1) -1\(⋮\)15

                16^(n-2) -1\(⋮\)15

                 .....

                  16 -1 \(⋮\)15

=>[16^(n-1) -1]+[16^(n-2) -1]+...+(16-1) =15k      (k\(\in\)N)

=>16^n-15n-1 = 15 . 15k = 225 k\(⋮\)225

     (đpcm)

Bình luận (0)
BN
Xem chi tiết
NH
1 tháng 5 2023 lúc 23:19

Dùng phương pháp quy nạp toán học em nhé.

Với n = 1 ta có: 41 + 15.1 - 1 = 18 ⋮ 9 ( đúng)

Giả sử 4n + 15n - 1 ⋮ 9 với n = k (kϵ N)

Ta cần chứng minh 4n + 15n - 1 ⋮9 với n = k + 1

                        ⇔ 4k+1 + 15(k+1) - 1 ⋮ 9

Thật vậy ta có:

    4k + 15k - 1 ⋮ 9 ( theo giả thuyết)

⇔ 4.( 4k + 15k - 1) ⋮ 9

⇔  4k+1 + 60k - 4 ⋮ 9

⇔ 4k+1 + 15k + 45k  + 15 - 1 - 18 ⋮ 9

⇔ 4k+1 + 15k + 15 - 1+ 45k - 18 ⋮ 9

⇔ 4k+1 + 15(k+1) - 1 + 45k - 18 ⋮ 9

⇔ 4k+1 + 15(k+1) - 1 ⋮ 9 ( đpcm)

Vậy 4n + 15n - 1 ⋮ 9 ∀ n ϵ N

Bình luận (0)
BN
1 tháng 5 2023 lúc 22:53

 mấy anh chị giúp em với ạ

 

Bình luận (0)
H24
Xem chi tiết
H24
30 tháng 1 2021 lúc 21:28

a) Với \(n\in N\Rightarrow2^{4n}-1=16^n-1=\left(16-1\right).\left(16^{n-1}+16^{n-2}+...+1\right)\)

\(=15.\left(16^{n-1}+16^{n-2}+...+1\right)⋮15\)

b) Với \(n\in N\Rightarrow16^n-15n-1=\left(16^n-1\right)-15n\)

mà \(\left(16^n-1\right)⋮15\left(cma\right);15n⋮15\)

\(\Rightarrow16^n-15n-1⋮15\)

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
19 tháng 7 2019 lúc 16:45

4n + 15n – 1 chia hết cho 9

Đặt An = 4n + 15n – 1

với n = 1 ⇒ A1 = 4 + 15 – 1 = 18 chia hết 9

+ giả sử đúng với n = k ≥ 1 nghĩa là:

Ak = (4k + 15k – 1) chia hết 9 (giả thiết quy nạp)

Ta cần chứng minh: Ak + 1 chia hết 9

Thật vậy, ta có:

Ak + 1 = 4k+1 + 15(k + 1) – 1

         = 4.4k + 15k + 15 – 1

         = 4.(4k + 15k – 1) – 45k+ 4+ 15 – 1

         = 4.(4k +15k- 1) – 45k + 18

         = 4. Ak + (- 45k + 18)

Ta có: Ak⋮ 9 và ( - 45k+ 18) = 9(- 5k + 2)⋮ 9

Nên Ak + 1 ⋮ 9

Vậy 4n + 15n – 1 chia hết cho 9 ∀n ∈ N*

Bình luận (0)