cho cac so a b thoa man a+b=1
chung minh \(a^3+b^3+ab\ge\frac{1}{2}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho a,b,c la cac so nguyen duong thoa man: abc=1. CMR
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
bài này chứng minh bài toán phụ, khá là phức tạp, trình bày ra chắc chết quá
bài này mình thấy tren mạng đăng lên đó, có kết quả nhưng ko copy được
Bài này bạn xem lại trong chtt ấy! Mình giải bài này rồi, giải bằng miệng cho nhanh.
Cho cac so a,b khac nhau va thoa man \(a+\frac{1}{a}=b+\frac{1}{b}\) Chung minh ab=1
Cho a,b,c la cac so duong thoa man dieu kien \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Cmr \(\frac{a^2}{a+bc}+\frac{b^2}{b+ca}+\frac{c^2}{c+ab}\ge\frac{a+b+c}{4}\)
Cho a,b,c la cac so duong thoa man dieu kien \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Cmr \(\frac{a^2}{a+bc}+\frac{b^2}{b+ca}+\frac{c^2}{c+ab}\ge\frac{a+b+c}{4}\)
Choa,b,c la cac so duong thoa man dieu kien \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Cmr \(\frac{a^2}{a+bc}+\frac{b^2}{b+ca}+\frac{c^2}{c+ab}\ge\frac{a+b+c}{4}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow ab+bc+ca=abc\)
\(\frac{a^2}{a+bc}=\frac{a^3}{a^2+abc}=\frac{a^3}{a^2+ab+bc+ca}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}\)
Cô si:
\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+b}{8}\ge3\sqrt[3]{\frac{a^3}{\left(a+b\right)\left(b+c\right)}.\frac{\left(a+b\right)}{8}.\frac{\left(b+c\right)}{8}}=\frac{3a}{4}\)
Tương tự với 2 cục còn lại, công theo vế:
\(VT+\frac{a+b+c}{2}\ge\frac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow VT\ge\frac{a+b+c}{4}\text{ }\left(dpcm\right)\)
cho cac so a,b,c duong thoa man ab+bc+ca=1 chung minh : \(p=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)
cho a, b, c la cac so duong thoa man a\(a^2+b^2+c^2=3\) . Chung minh rang : \(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}>=3\)
???? là sao vừa lớn vừa bằng đó
duyệt đi
cho a,b,c la cac so nguyen thoa man a+b+c+ab+bc+ca=6. chung minh rang a^2+b^2+c^2 khong nho hon 3
Cho cac so a,b,c thoa man: a+b+c=\(\dfrac{3}{2}\)
CMR: \(a^2+b^2+c^2\ge\dfrac{3}{4}\)
Áp dụng BĐT Bunyakovsky, ta có:
\(a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{\left(\dfrac{3}{2}\right)^2}{3}=\dfrac{3}{4}\)