Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
HT
Xem chi tiết
NT
29 tháng 3 2016 lúc 21:23

bài này chứng minh bài toán phụ, khá là phức tạp, trình bày ra chắc chết quá

Bình luận (0)
LD
29 tháng 3 2016 lúc 21:40

bài này mình thấy tren mạng đăng lên đó, có kết quả nhưng ko copy được

Bình luận (0)
PN
30 tháng 3 2016 lúc 9:16

Bài này bạn xem lại trong chtt ấy! Mình giải bài này rồi, giải bằng miệng cho nhanh.

Bình luận (0)
H24
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết
ML
15 tháng 4 2016 lúc 21:05

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow ab+bc+ca=abc\)

\(\frac{a^2}{a+bc}=\frac{a^3}{a^2+abc}=\frac{a^3}{a^2+ab+bc+ca}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}\)

Cô si: 

\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+b}{8}\ge3\sqrt[3]{\frac{a^3}{\left(a+b\right)\left(b+c\right)}.\frac{\left(a+b\right)}{8}.\frac{\left(b+c\right)}{8}}=\frac{3a}{4}\)

Tương tự với 2 cục còn lại, công theo vế:

\(VT+\frac{a+b+c}{2}\ge\frac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\frac{a+b+c}{4}\text{ }\left(dpcm\right)\)

Bình luận (0)
PD
Xem chi tiết
PB
Xem chi tiết
OO
15 tháng 3 2016 lúc 8:16

???? là sao vừa lớn vừa bằng đó

duyệt đi

Bình luận (0)
DH
Xem chi tiết
MT
Xem chi tiết
UK
4 tháng 12 2017 lúc 14:03

Áp dụng BĐT Bunyakovsky, ta có:

\(a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{\left(\dfrac{3}{2}\right)^2}{3}=\dfrac{3}{4}\)

Bình luận (0)