tim so tu nhien n de n^3 - n + 1 chia het cho 7
1.chung minh rang:3n.(n+1)chia het cho 6(n thuoc N
2.cmr 5n.(n+1).(n+2) chia het cho 30(n thuocN)
3.tim so tu nhien n de 7.(n-1) chia het cho 4
4.tim so tu nhien n de 5.( n-2) chia het cho 3
Toi quen mat cach lam roi xin loi nhe
tim so tu nhien n de n^3 - n + 1 chia het cho 7
tim so tu nhien n de n^3 - n + 1 chia het cho 7
tim so tu nhien n de n^3 - n + 1 chia het cho 7
Tim so tu nhien n de (n+7) chia het cho (n+1)
n + 7 = ( n + 1 ) + 6 =.> 6 cần phải chia hết cho (n + 1 )
ước số của 6 là : 6 ; 3 ; 2 ;1 nên (n + 1 ) có thể là : ( 5 + 1 ) ; (2 + 1 ) ; ( 1 + 1) ; ( 0 + 1 )
vậy ta có các giá trị của n = 5 ; 2 ; 1 ; 0
ta có:n+7=(n+1)+6
Vì n+1 bao giờ cũng chia hết cho n+1 mà (n+1)+6 chia hết cho n+1 nên 6 cũng chia hết cho n+1=> n+1 thuộc Ư(6)={1;2;3;6}
Nếu n+1 bằng 1 thì n bằng 0
Nếu n+1 bằng 2 thì n bằng 1
Nếu n+1 bằng 3 thì n bằng 2
Nếu n+1 bằng 6 thì n bằng 5
Vậy n thuộc {0;1;2;5}
tim so tu nhien N de
a] n+7 chia het cho n+2
b] 3n+4 chia het cho n+1
c] n^2+3 chia het cho n+4
tim tat ca cac so tu nhien n de 4^n-1 chia het cho 7
tim so tu nhien n lon nhat de tich cac so tu nhien tu 1 den 1000 chia het cho 5n
Để n lớn nhất thì n chính là số các thừa số 5 xuất hiện trong tích các số từ 1 đến 1000
Xét 5n < 1000 . ta có: 54 = 625 < 1000 < 55
- Tìm các số chia hết cho 5 từ 1 đến 1000 gồm: 5; 10; 15;....;1000
=> có (1000 - 5) : 5 + 1 = 200 số
- tìm các số chia hết cho 25 (Vì 25 = 5.5) gồm: 25; 50; ...; 1000
=> có: (1000 - 25) : 25 + 1 = 40 số
- Tìm các số chia hết cho 125 (125 = 5.5.5) gồm: 125; 250;...; 1000
=> có : (1000 - 125): 125 + 1 = 8 số
- Tìm các số chia hết cho 625 (625 = 5.5.5.5) gồm: 625 => có 1 số
Vì những số chia hết cho 625 sẽ chia hết cho 125 ; 125; 25; 5 nên trong cách tính trên có đếm trùng
Vậy có : 1 số chia hết cho 625; => có 4 số 5 trong tích
7 số chia hết cho 125 => có 7.3 = 21 số 5 trong tích
32 số chia hết cho 25 => có 32 x 2 = 64 số 5 trong tích
200 - 40 = 160 số chỉ chia hết cho 5 => có 160.1 = 160 số 5 trong tích
Vậy có tất cả: 4 + 21 + 64 + 160 = 249 thừa số 5 trong tích
Vậy n lớn nhất = 249
tim so tu nhien n de n^2+3 chia het cho n+2
n2 +3=n(n+2) -2(n+2) +7 chia hết cho n+2
=> 7 chia hết cho n+2
=> n+2 thuộc Ư(7) ={1;7}
=> n+2 =7
=> n =5
n2 + 3 = n(n+2) -2(n+2)+7 => chia hết cho n+2
=> 7 chia hết cho n+2
=> n+2 \(\in\) Ư(7) = { 1 ; 7 }
=> n + 2 = 7
=> n = 5