Cho S = 1 - 2 + 2^2 - 2^3 + .... - 2^2005 + 2^2006
a) Tính 2S; 3S
b) Tính 3S - 2^2007
Nhờ
Cho: S=1-2+2^2-2^3+...-2^2005+2^2006
1/ TÍnh 2S và 3S
2/ Tính 3S-2^2007
1/đặt M= 1-2 = -1
N= 2^2-2^3+...-2^2005+2^2006
Ta có
N= 2^2-2^3+...-2^2005+2^2006
2N=2^3-2^4+...-2^2006+2^2007
2N-N=(2^3-2^4+...-2^2006+2^2007)-(2^2-2^3+...-2^2005+2^2006)
N=2^2007-2^2
=) S=M+N
= -1+2^2007-2^2
=)2S= -2+2^2008-2^3
= 2^2008-10
=)3S= -3+3.2^2007-3.2^2
= 3.2^2007-15
2/ =)3S-2^2007=3.2^2007-15 -2^2007
=2.2^2007-15
Vậy 1/ 2S= 2^2008-10
3S= 3.2^2007-15
2/ 3S-2^2007= 2.2^2007-15
Cho S=1-2+22-23+...-22005+22006
a,Tính 2S, 3S
b,Tính 3S-22007
a)Ta có: \(S=1-2+2^2-2^3+...-2^{2005}+2^{2006}\)
\(2.S=2-2^2+2^3-2^4+...-2^{2006}+2^{2007}\)
\(2S+S=\left(2-2^2+2^3-2^4+...-2^{2006}+2^{2007}\right)+\left(1-2+2^2-2^3+...-2^{2005}+2^{2006}\right)\)
\(3S=2^{2007}+1\)
b) \(3S-2^{2007}=2^{2007}+1-2^{2007}=1\)
cho s= 1 2+2^2-2^3...-2^2005+2^2006 a)tinh 2s va 3s b)tinh 3s -2^2007
Cho S= 1-2+22-23+...-22005+22006
a) Tính 2S và 3S
b) TÍnh 3S- 22007
Cho S=1-2+22-23+...-22005+22006
1)Tính 2S và 3S
2)3S-22007
Cho S= \(\frac{2}{2005+1}+\frac{2^2}{2005^2+1}+\frac{2^3}{2005^{2^2}+1}+........+\frac{2^{n+1}}{2005^{2^n}+1}+.......+\frac{2^{2006}}{2005^{2^{2006}}+1}\)
So sánh S với \(\frac{1}{1002}\)
Cho \(S=\frac{2}{2005+1}+\frac{2^2}{2005^2+1}+\frac{2^3}{2005^{2^2}+1}+...+\frac{2^{n+1}}{2005^{2^{n+1}}+1}+...+\frac{2^{2006}}{2005^{2^{2006}}+1}\)
So sánh S với \(\frac{1}{1002}\)
Cho \(S=\frac{2}{2005+1}+\frac{2^2}{2005^2+1}+...+\frac{2^{n+1}}{2005^{^{2^n}}+1}+...+\frac{2^{2006}}{2006^{2^{2005}}+1}\). So sánh S với \(\frac{1}{1002}\)
c = 2005/2 + 2005/3+ 2005/4+....+ 2005/2005 , d = 2006 / 1 + 2006 / 2 + 2006 / 3 +....+ 4009 / 2004 tính c-d