Những câu hỏi liên quan
TN
Xem chi tiết
EA
24 tháng 8 2018 lúc 16:40

ko bik

Bình luận (0)
HD
Xem chi tiết
TQ
4 tháng 11 2016 lúc 16:16

Gọi hai số đó là : \(x\)\(y\)

Theo đề bài , ta có :

\(35.\left(x+y\right)=210\left(x-y\right)=12\left(xy\right)\)

\(\Rightarrow35.\left(x+y\right)=210.\left(x-y\right)\) \(\left(1\right)\)

\(210.\left(x-y\right)=12\left(xy\right)\) \(\left(2\right)\)

Từ \(\left(1\right)\Rightarrow35x+35y=210x-210y\)

 

\(\Rightarrow35y+210y=210x-35x\)

\(\Rightarrow245y=175x\)

\(\Rightarrow x=\frac{\left(245y\right)}{175}=\frac{\left(7y\right)}{5}\) \(\left(3\right)\)

Thay vào \(\left(2\right)\) , ta được :

\(210.\left(x-y\right)=12\left(xy\right)\)

\(\Rightarrow210.\left[\frac{\left(7y\right)}{5-y}\right]=12.\left[\frac{7y}{5y}\right]\)

\(\Rightarrow210.\left[\frac{\left(2y\right)}{5}\right]=\left[\frac{\left(84y\right)}{5}\right].y\)

\(\Rightarrow\frac{\left(420y\right)}{5}=\frac{84y^2}{5}\)

\(\Rightarrow\left[\frac{\left(420y\right)}{5}\right]-\left[\frac{84y^2}{5}\right]=0\)

\(\Rightarrow\frac{\left[84.\left(5-y\right)\right]}{5}=0\)

\(\Rightarrow y=0\) ( vô lí )

\(\Rightarrow5-y=0\)

\(\Rightarrow y=5\)

Thay vào \(\left(3\right)\) , ta có :

\(x=\frac{\left(7y\right)}{5}=\frac{\left(7.5\right)}{5}=\frac{37}{5}=7\)

Vậy \(x=7;y=5\)

Bình luận (2)
NH
2 tháng 12 2017 lúc 17:17

Gọi 2 số dương cần tìm là a và b. Giả sử a > b

Ta có:
- tổng của chúng là (a + b)
- hiệu của chúng là (a - b)
- tích của chúng là ab


biết tổng,hiệu và tích của chúng tỉ lệ nghịch với 35, 210, và 12 ,

tức là : 35(a + b) = 210(a - b) = 12ab

hay rõ hơn là
(a + b) : (a - b) = 210 : 35 => 35(a + b) = 210(a - b) => (a - b) = (a + b)/6 (1)
và (a - b) : ab = 12 : 210 => 12ab = 210(a - b) => (a - b) = 2ab/35 (2)

Từ (1) ta có:
(a - b)/1 = (a + b)/6 = [(a - b) + (a + b)] / (1+ 6) = 2a/7 (3)

Từ (1) ta lại có:
(a - b)/1 = (a + b)/6 = [(a + b) - (a - b)] / (6 - 1) = 2b/5 (4)

Từ (2) & (3)
=> 2ab/35 = 2a/7 => b = 5

Từ (2) & (4)
=> 2ab/35 = 2b/5 => a = 7

Đáp số : a = 7 & b = 5

Bình luận (0)
TT
1 tháng 5 2024 lúc 20:53

-Gọi hai số cần tìm là  a,b

_Do tổng hiệu và tích ccuar chúng tỉ lệ nghịch với 35,210,12

=>35.(a+b)=210.(a-b)=12.(a.b)

=>35a+35b=210a-210b

=>35a-210a=-35b-210b

=>-175a=-245b   =>a/b=-245/175=7/5

vậy a=7;b=5 

Bình luận (0)
ND
Xem chi tiết
WK
Xem chi tiết
NG
31 tháng 12 2015 lúc 16:40

Gọi 2 số phải tìm là a và b

Theo bài ra ta có: 30.(a+b)=120.(a-b)=a.b.16          =>15.(a+b)=60.(a-b)=8.a.b

Ta có:15.a+15.b=60.a-60.b  =>75.b=45.a        =>a/5=b/3       =>a=(5/3).b

Thay a=(5/3).b ta được         15.[(5/3).b+b)]=8.(5/3).b.b

                                           =>40.b=(40/3).b2

                                           =>b=(1/3).b2   =>b=3

=>a=3.(5/3)=5

Vạy a=5;b=3

           

Bình luận (0)
ND
Xem chi tiết
ND
Xem chi tiết
TL
Xem chi tiết
NH
Xem chi tiết
PH
23 tháng 11 2018 lúc 21:52

Gọi 2 số dương cần tìm là a và b

Ta có: \(\left(a+b\right).30=\left(a-b\right).120=16.ab\)

\(\left(a+b\right).30=\left(a-b\right).120\Rightarrow\frac{a+b}{a-b}=\frac{120}{30}=4\)

\(\Rightarrow a+b=4a-4b\Rightarrow b+4b=4a-a\Rightarrow5b=3a\Rightarrow a=\frac{5}{3}b\)

\(\left(a+b\right).30=16ab\)

\(\Rightarrow\left(\frac{5}{3}b+b\right).30=16.\frac{5}{3}b.b\)

\(\Rightarrow80b=\frac{80}{3}b^2\)

\(\Rightarrow80b\left(1-\frac{1}{3}b\right)=0\Rightarrow1-\frac{1}{3}b=0\left(b>0\right)\Rightarrow b=3\)

Tìm được \(a=\frac{5}{3}b=\frac{5}{3}.3=5\)

Vậy 2 số cần tìm là 5 và 3.

Bình luận (0)
ND
Xem chi tiết
ST
20 tháng 1 2018 lúc 17:02

Theo đề bài ta có: \(35\left(x+y\right)=210\left(x-y\right)=12xy\)

\(\Rightarrow\frac{35\left(x+y\right)}{420}=\frac{210\left(x-y\right)}{420}=\frac{12xy}{420}\)

\(\Rightarrow\frac{x+y}{12}=\frac{x-y}{2}=\frac{xy}{35}\left(1\right)\)

Áp dụng TCDTSBN ta có:

\(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)+\left(x-y\right)}{12+2}=\frac{2x}{14}=\frac{x}{7}\left(2\right)\) 

\(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)-\left(x-y\right)}{12-2}=\frac{2y}{10}=\frac{y}{5}\left(3\right)\)

Từ (1) và (2) => \(\frac{xy}{35}=\frac{x}{7}\Rightarrow\frac{xy}{35}=\frac{xy}{7y}\Rightarrow y=5\)

Từ (1) và (3) => \(\frac{xy}{35}=\frac{y}{5}\Rightarrow\frac{xy}{35}=\frac{xy}{5x}\Rightarrow x=7\)

Bình luận (0)