Cho hệ phương trình (I) \(\hept{\begin{cases}mx+y=5\\3x-my=2\end{cases}}\). Gọi (x;y) là nghiệm của hệ phương trình (I). Xác định giá trị của m để P = x2 + y2 đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
cho hệ phương trình\(\hept{\begin{cases}mx-y=2\\3x+my=5\end{cases}}\)
a) giải hệ phương trình khi m=2
b) tìm m để hệ phương trình có nghiệm duy nhất
giúp mình với mình cần nộp trong ngày 17/2/2020
\(a,\)Từ hệ PT trên \(< =>\hept{\begin{cases}2x-y=2\\3x+2y=5\end{cases}}\)
\(< =>\hept{\begin{cases}4x-2y=4\\3x+2y=5\end{cases}}\)
\(< =>\hept{\begin{cases}7x=9\\2x-y=2\end{cases}}\)
\(< =>\hept{\begin{cases}x=\frac{9}{7}\\\frac{18}{7}-y=2\end{cases}}\)
\(< =>\hept{\begin{cases}x=\frac{9}{7}\\y=\frac{4}{7}\end{cases}}\)
Vậy nghiệm của PT trên là ...
a)cho hệ phương trình \(\hept{\begin{cases}x-2y=3-m\\2x+y=3\left(m+2\right)\end{cases}}\)
Gọi nghiệm của hệ phương trình là(x;y)Tìm m để \(x^2+y^2\)đạt GTNN
b)Cho hệ phương trình \(\hept{\begin{cases}mx+y=5\\2x-y=2\end{cases}}\)
Tìm m để hệ phương trình có nghiệm thỏa mãn x+y=1
Co hệ phương trình \(\hept{\begin{cases}mx-y=2\\3x+my=5\end{cases}}\) Tìm m để hệ phương trình có nghiệm thỏa mãn x+y=1-\(\frac{m^2}{m^2+3}\)
Cho hệ phương trình \(\hept{\begin{cases}3x+my=5\\mx-y=2\end{cases}}\). Tìm giá trị của m để phương trình có nghiệm (x;y) thỏa mãn \(x+y=1-\frac{m^2}{m^2+3}\)
Tìm tất cả các số thực m để hệ phương trình có nghiệm x;y mà x>0;y>0
\(\hept{\begin{cases}mx-y=2\\3x+my=5\end{cases}}\)
TH1 \(m=0\Rightarrow\hept{\begin{cases}-y=2\\3x=5\end{cases}\Rightarrow\hept{\begin{cases}y=-2\\x=\frac{5}{3}\end{cases}\left(l\right)}}\)
TH2 \(m\ne0\)
Hệ pt \(\Leftrightarrow\hept{\begin{cases}m^2x-my=2m\\3x+my=5\end{cases}}\)
\(\Rightarrow m^2x+3x=2m+5\Rightarrow\left(m^2+3\right)x=2m+5\)
\(\Rightarrow x=\frac{2m+5}{m^2+3}\)
\(\Rightarrow y=mx-2=m.\frac{2m+5}{m^2+3}-2=\frac{2m^2+5m-2m^2-6}{m^2+3}\)
\(=\frac{5m-6}{m^2+3}\)
Yêu cầu bài toán \(\Leftrightarrow\hept{\begin{cases}x>0\\y>0\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2m+5}{m^2+3}>0\\\frac{5m-6}{m^2+3}>0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}m>\frac{6}{5}\\m>-\frac{5}{2}\end{cases}\Leftrightarrow m>\frac{6}{5}}\)
Vậy m=6/5
Cho hệ phương trình: \(\hept{\begin{cases}mx-y=2\\3x+my=5\end{cases}}\)
Với giá trị nào của m thì hệ phương trình có nghiệm thỏa mãn \(x-y=1-\frac{m^2}{m^2+3}\)
giải và biện luận các hệ phương trình:
\(\hept{\begin{cases}x-my=1+m^2\\mx+y=1+m^2\end{cases}}\)
\(\hept{\begin{cases}5x+2y=3\\2mx+my-y=m+1\end{cases}}\)
bạn à bạn k cho mình trước rồi mình sẽ trả lời cho.Hứa mình học CHUYÊN TOÁN mà,đừng lo nha.Hứa đó
cái này mk làm đc nhưng nó hơi dài b
Cho hệ phương trình: \(\hept{\begin{cases}x-my=2\\mx+2y=1\end{cases}}\)
Tìm m để hệ phương trình có nghiệm (x; y) thỏa mãn: \(3x+2y-1\ge0\)
Ta có: \(\hept{\begin{cases}x-my=2\\mx+2y=1\end{cases}}\) <=> \(\hept{\begin{cases}2x-2my=4\\m^2x+2my=m\end{cases}}\)
<=> \(2x+m^2x=4+m\)
<=> \(x\left(m^2+2\right)=4+m\)
<=> \(x=\frac{4+m}{m^2+2}\) => \(y=\frac{1-mx}{2}=\frac{1-m\cdot\frac{4+m}{m^2+2}}{2}=\frac{\frac{m^2+2-4m-m^2}{m^2+2}}{2}\)
=> \(y=\frac{2-4m}{2\left(m^2+2\right)}=\frac{1-2m}{m^2+2}\)
Theo bài ra, ta có: \(3x+2y-1\ge0\)
<=> \(3\cdot\frac{4+m}{m^2+2}+2\cdot\frac{1-2m}{m^2+2}-1\ge0\)
<=> \(\frac{3\left(4+m\right)+2\left(1-2m\right)-m^2-2}{m^2+2}\ge0\)
<=> \(12+3m+2-4m-m^2-2\ge0\) (vì \(m^2+2>0\))
<=> \(-m^2-m+12\ge0\)
<=> \(m^2+4m-3m-12\le0\)
<=> \(\left(m+4\right)\left(m-3\right)\le0\)
<=> \(\hept{\begin{cases}m+4\ge0\\m-3\le0\end{cases}}\) hoặc \(\hept{\begin{cases}m+4\le0\\m-3\ge0\end{cases}}\)
<=> \(\hept{\begin{cases}m\ge-4\\m\le3\end{cases}}\) hoặc \(\hept{\begin{cases}m\le-4\\m\ge3\end{cases}}\)
<=> \(-4\le m\le3\)
giải và biện luận các hệ phương trình sau :
a) \(\hept{\begin{cases}mx-y=2\\2x+y=m\end{cases}}\)
b)\(\hept{\begin{cases}2+mx=3\\3x-2y=2m\end{cases}}\)