Những câu hỏi liên quan
LK
Xem chi tiết
TN
Xem chi tiết
DT
Xem chi tiết
HP
1 tháng 8 2016 lúc 16:08

\(a,\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0=>\frac{ab+bc+ac}{abc}=0=>ab+bc+ac=0.abc=0\)

\(a+b+c=1=>\left(a+b+c\right)^2=1=>a^2+b^2+c^2+2ab+2bc+2ac=1\)

\(=>a^2+b^2+c^2+2\left(ab+bc+ac\right)=1=>a^2+b^2+c^2=1-0=1\) (vì ab+bc+ac=0)

\(b,S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)

\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}-3=\left(a+b+c\right).\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)-3\)

\(=2014.\frac{1}{2014}-3=1-3=-2\)

Vậy.....................

Bình luận (0)
H24
Xem chi tiết
NL
Xem chi tiết
TH
Xem chi tiết
BN
Xem chi tiết
TN
Xem chi tiết
HP
Xem chi tiết
H24
18 tháng 1 2019 lúc 17:54

=> \(\left(a+b+c\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)

\(\Rightarrow\left(a+b+c\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)

đoạn tiếp tham khảo tại: Boul đz :D

Bình luận (0)