cho x,y,z>0 thỏa mãn \(x^2+y^2+z^2\le3\)
Tìm min \(C=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\)
Cho 3 số dương x,y,z thỏa mãn \(x^2+y^2+z^2\le3\)
Tìm GTNN của P=\(\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\)
Theo hệ quả của bất đẳng thức Cauchy - Schwarz
\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)
Mà \(x^2+y^2+z^2\le3\)
\(\Rightarrow xy+yz+xz\le3\)
Ta có \(P=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow P\ge\dfrac{\left(1+1+1\right)^2}{xy+1+yz+1+xz+1}=\dfrac{9}{xy+yz+xz+3}\) (1)
Ta có \(xy+yz+xz\le3\)
\(\Rightarrow xy+yz+xz+3\le6\)
\(\Rightarrow\dfrac{9}{xy+yz+xz+3}\ge\dfrac{9}{6}=\dfrac{3}{2}\) (2)
Từ (1) và (2)
\(\Rightarrow P\ge\dfrac{3}{2}\)
Vậy \(P_{min}=\dfrac{3}{2}\)
Dấu " = " xảy ra khi \(x=y=z=1\)
Cho số thực dương x,y,z thỏa mãn điều kiện xy+yz+zx=xyz. Tìm min của P=\(\frac{x}{y^2}\)+ y/z^2+z/x^2+6(\(\frac{1}{xy}\)+1/yz+1/zx)
Cho x,y,z > 0 thỏa mãn xy + yz +zx = 1.Chứng minh
\(\frac{x-y}{z^2+1}\)+\(\frac{y-z}{x^2+1}\)+\(\frac{z-x}{y^2+1}\)=0
\(\dfrac{x-y}{z^2+1}=\dfrac{x-y}{z^2+xy+yz+zx}=\dfrac{x-y}{z\left(z+y\right)+x\left(z+y\right)}=\dfrac{x-y}{\left(x+z\right)\left(z+y\right)}\)
Tương tự: \(\dfrac{y-z}{x^2+1}=\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}\);\(\dfrac{z-x}{y^2+1}=\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)
Cộng vế với vế \(\Rightarrow VT=\dfrac{x-y}{\left(x+z\right)\left(y+z\right)}+\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}+\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)
\(=\dfrac{\left(x-y\right)\left(x+y\right)+\left(y-z\right)\left(y+z\right)+\left(z-x\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(=\dfrac{x^2-y^2+y^2-z^2+z^2-x^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=0\)(đpcm)
Cho 3 số dương x,y,z thỏa mãn \(x^2+y^2+z^2\le3\)
Tìm GTNN của \(P=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\)
Theo hệ quả của bất đẳng thức Cauchy - Schwarz
\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)
Mà \(x^2+y^2+z^2\le3\)
\(\Rightarrow xy+yz+xz\le3\)
Ta có \(P=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow P\ge\frac{\left(1+1+1\right)^2}{xy+1+yz+1+xz+1}=\frac{9}{xy+yz+xz+3}\left(1\right)\)
Ta có : \(xy+yz+xz\le3\)
\(\Rightarrow xy+yz+xz+3\le6\)
\(\Rightarrow\frac{9}{xy+yz+xz+3}\ge\frac{9}{6}=\frac{3}{2}\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow P\ge\frac{3}{2}\)
Vậy \(P_{min}=\frac{3}{2}\)
Dấu " = " xảy ra khi \(x=y=z=1\)
Chúc bạn học tốt !!!
Cho x,y,z>0 thoả mãn \(x+y+z\le3\). tìm GTNN của biểu thức
\(P=\frac{2}{x^3}+\frac{2}{y^3}+\frac{2}{z^3}+\frac{1}{x^2-xy+y^2}+\frac{1}{y^2-yz+z^2}+\frac{1}{z^2-zx+x^2}\)
Cho x,y,z>0 thoả mãn \(x+y+z\le3\). Tìm GTNN của biểu thức
\(P=\frac{2}{x^3}+\frac{2}{y^3}+\frac{2}{z^3}+\frac{1}{x^2-xy+y^2}+\frac{1}{y^2-yz+z^2}+\frac{1}{z^2-zx+x^2}\)
Cho 3 số thực x, y, z thỏa mãn: \(x+y+z\le\frac{3}{2}\). Tìm Min \(P=\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}+\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}\)
Ta có \(P=\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}+\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}\)
\(=\frac{\frac{\left(yz+1\right)^2}{z^2}}{\frac{zx+1}{x}}+\frac{\frac{\left(zx+1\right)^2}{x^2}}{\frac{xy+1}{y}}+\frac{\frac{\left(xy+1\right)^2}{y^2}}{\frac{yz+1}{z}}\)
\(=\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}+\frac{\left(z+\frac{1}{x}\right)^2}{x+\frac{1}{y}}+\frac{\left(x+\frac{1}{y}\right)^2}{y+\frac{1}{z}}\)
Áp dụng BĐT \(\frac{a_1^2}{b_1}+\frac{a_2^2}{b_2}+\frac{a_3^2}{b_3}\ge\frac{\left(a_1+a_2+a_3\right)^2}{b_1+b_2+b_3}\)
Dấu "=" xảy ra khi \(\frac{a_1}{b_1}=\frac{a_2}{b_2}=\frac{a_3}{c_3}\)
\(P=\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}+\frac{\left(z+\frac{1}{x}\right)^2}{x+\frac{1}{y}}+\frac{\left(x+\frac{1}{y}\right)^2}{y+\frac{1}{z}}\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}\)
\(P\ge a+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Áp dụng BĐT: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
=> \(P\ge x+y+z+\frac{9}{x+y+z}=\left[x+y+z+\frac{9}{4\left(x+y+z\right)}\right]+\frac{27}{4\left(x+y+z\right)}\)
Ta có: \(x+y+z+\frac{9}{4\left(x+y+z\right)}\ge2\sqrt{\frac{9}{4}}=3;\frac{27}{4\left(x+y+z\right)}=\frac{27}{4\cdot\frac{3}{2}}=\frac{9}{2}\)
=> \(P\ge3+\frac{9}{2}=\frac{15}{2}\).
Dấu "=" xảy ra <=> x=y=z=\(\frac{1}{2}\)
Vậy MinP=\(\frac{15}{2}\)đạt được khi x=y=z=\(\frac{1}{2}\)
Ta có:
\(P=\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}+\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}\)
\(=\frac{\left(\frac{yz+1}{z}\right)^2}{\left(\frac{zx+1}{x}\right)}+\frac{\left(\frac{zx+1}{x}\right)^2}{\left(\frac{xy+1}{y}\right)}+\frac{\left(\frac{xy+1}{y}\right)^2}{\left(\frac{yz+1}{z}\right)}\)
\(=\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}+\frac{\left(z+\frac{1}{x}\right)^2}{x+\frac{1}{y}}+\frac{\left(x+\frac{1}{y}\right)^2}{y+\frac{1}{z}}\)
Áp dụng BĐT Bunhiacopxki dạng phân thức, ta có:
\(\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}+\frac{\left(z+\frac{1}{x}\right)^2}{x+\frac{1}{y}}+\frac{\left(x+\frac{1}{y}\right)^2}{y+\frac{1}{z}}\)\(\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}=x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\ge\left(x+y+z\right)+\frac{9}{x+y+z}=\left(x+y+z\right)+\frac{9}{4\left(x+y+z\right)}\)
\(+\frac{27}{4\left(x+y+z\right)}\ge2\sqrt{\left(x+y+z\right).\frac{9}{4\left(x+y+z\right)}}+\frac{27}{4.\frac{3}{2}}=\frac{15}{2}\)(Áp dụng BĐT Cô - si cho 2 số không âm)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{2}\)
Một cách giải khác ( cách này em làm rùi giờ làm lại ạ ) cô Chi check em ạ :)
Áp dụng BĐT AM-GM ta có:
\(P=\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}+\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}\)
\(\ge3\sqrt[3]{\frac{xyz\left(xy+1\right)^2\left(yz+1\right)^2\left(zx+1\right)^2}{x^2y^2z^2\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}}\)
\(=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}\)
\(=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)
Áp dụng tiếp BĐT AM-GM ta có:
\(y+\frac{1}{x}=y+\frac{1}{4x}+\frac{1}{4x}+\frac{1}{4x}+\frac{1}{4x}\ge5\sqrt[5]{\frac{y}{256x^4}}\)
Tương tự \(z+\frac{1}{y}\ge5\sqrt[5]{\frac{z}{256y^4}};x+\frac{1}{z}\ge5\sqrt[5]{\frac{x}{256z^4}}\)
Sử dụng liên hoàn BĐT AM-GM ta có tiếp
\(P\ge3\sqrt[3]{5\sqrt[5]{\frac{y}{256x^4}}\cdot5\sqrt[5]{\frac{z}{256y^4}}\cdot5\sqrt[5]{\frac{x}{256z^4}}}\)
\(=3\sqrt[3]{125\sqrt[5]{\frac{xyz}{256^3\left(xyz\right)^4}}}\)
\(=15\sqrt[3]{\sqrt[5]{\frac{1}{256^3\left(xyz\right)^3}}}\)
\(=15\sqrt[15]{\frac{1}{256^3\left(xyz\right)^3}}\)
\(\ge15\sqrt[15]{\frac{1}{256^3\left(\frac{x+y+z}{3}\right)^9}}\)
\(\ge15\sqrt[15]{256^3\cdot\frac{1}{2^9}}=\frac{15}{2}\)
Dấu "='" xảy ra tại x=y=z=1/2
Cho a,b,c dương thỏa mãn \(a^2+b^2+c^2\le3\)
Chứng minh rằng \(\frac{1+xy}{z^2+xy}+\frac{1+yz}{x^2+yz}+\frac{1+zx}{y^2+zx}\ge3\)
cho x,y,z khác 0 thỏa mãn \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\) = 0 Tính giá trì của biểu thức N= \(\frac{x^2}{yz}+\frac{y^2}{zx}+\frac{z^2}{xy}\)
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=0\Rightarrow\frac{x+y+z}{xyz}=0\Rightarrow x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)
\(N=\frac{x^2}{yz}+\frac{y^2}{zx}+\frac{z^2}{xy}=\frac{x^3+y^3+z^3}{xyz}=\frac{3xyz}{xyz}=3\)