Những câu hỏi liên quan
NA
Xem chi tiết
GH
19 tháng 6 2023 lúc 22:12

\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\\ \Rightarrow\dfrac{y+z-x}{x}+2=\dfrac{z+x-y}{y}+2=\dfrac{x+y-z}{z}+2\\ \Rightarrow\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\\ \Rightarrow x=y=z\\ \Rightarrow A=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)

Bình luận (2)
KT
Xem chi tiết
LD
24 tháng 1 2018 lúc 17:17

Bài 1: Cho ba số x,y,z khác 0 thỏa mãn:
{xyz=11x+1y+1z<x+y+z{xyz=11x+1y+1z<x+y+z
Chứng minh rằng có đúng một trong ba số x,y,z lớn hơn 1.

{xyz=11x+1y+1z<x+y+z⇔{xyz=1xyz(1x+1y+1z)<x+y+z{xyz=11x+1y+1z<x+y+z⇔{xyz=1xyz(1x+1y+1z)<x+y+z
⇔{xyz=1xy+yz+zx<x+y+z⇔{xyz=1x+y+z−(xy+yz+zx)>0⇔{xyz=1xy+yz+zx<x+y+z⇔{xyz=1x+y+z−(xy+yz+zx)>0
Xét tích:
(x−1)(y−1)(z−1)=xyz−(xy+yz+zx)+(x+y+z)−1=x+y+z−(xy+yz+zx)>0⇒(x−1)(y−1)(z−1)>0(x−1)(y−1)(z−1)=xyz−(xy+yz+zx)+(x+y+z)−1=x+y+z−(xy+yz+zx)>0⇒(x−1)(y−1)(z−1)>0
Vậy trong 3 số x,y,zx,y,z có 1 số lớn hơn 1, 2 số nhỏ hơn 1 hoặc cả 3 số lớn hơn 1
Tuy nhiên, nếu x,y,z>1⇒xyz>1x,y,z>1⇒xyz>1. Mâu thuẫn với gt
Vậy ta có ĐPCM 

Bình luận (0)
NA
Xem chi tiết
DH
16 tháng 2 2018 lúc 20:38

\(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)\(\Rightarrow\hept{\begin{cases}x-y=\frac{1}{z}-\frac{1}{y}=\frac{y-z}{xy}\\y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{xz}\\z-x=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{xy}\end{cases}}\)

\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{\left(xyz\right)^2}\)

\(\Leftrightarrow\frac{1}{\left(xyz\right)^2}=1\Rightarrow xyz=\pm1\)(đpcm)

Bình luận (0)
DN
Xem chi tiết
ZZ
25 tháng 7 2019 lúc 15:00

\(A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)

\(A=\frac{x-z}{x}\cdot\frac{y-x}{y}\cdot\frac{y+z}{z}\)

Do \(x-y-z=0\)

\(\Rightarrow x-z=y;y-x=-z;y+z=x\)

Khi đó \(A=\frac{y}{x}\cdot\frac{-z}{y}\cdot\frac{x}{z}=-1\)

Vậy A=-1

Bình luận (0)
ZZ
25 tháng 7 2019 lúc 15:04

\(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}\)

\(=\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{1+yz+y}\)

\(=\frac{1}{xy+x+1}+\frac{y+1}{yz+y+1}\)

\(=\frac{yz}{xy\cdot yz+xyz+yz}+\frac{y+1}{yz+y+1}\)

\(=\frac{yz}{yz+y+1}+\frac{y+1}{yz+y+1}\)

\(=\frac{yz+y+1}{yz+y+1}\)

\(=1\)

Bình luận (0)
DL
Xem chi tiết
TA
22 tháng 2 2019 lúc 19:42

pppppppppppppppppppppppppppppppppppppppppppppp'ppppppppppppppppppppppppppppp

ppppppppppppp

Bình luận (0)
CM
22 tháng 2 2019 lúc 19:45

Tao co:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow yz+xz+xy=0\)

\(Suyra:yz=-xz-xy;xz=-yz-xy;xy=-yz-xz\)

\(\Rightarrow x^2+2yz=x^2+yz-xz-xy=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)

\(\Rightarrow y^2+2xz=y^2+xz-yz-xy=z\left(x-y\right)-y\left(x-y\right)=\left(x-y\right)\left(z-y\right)\)

\(\Rightarrow z^2+2xy=z^2+xy-yz-xz=z\left(z-y\right)-x\left(z-y\right)=\left(z-y\right)\left(z-x\right)\)

\(Thay:\frac{1}{\left(x-y\right)\left(x-z\right)}+\frac{1}{\left(x-y\right)\left(z-y\right)}+\frac{1}{\left(z-y\right)\left(z-x\right)}\)

\(=\frac{z-y+x-z-x+y}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=0\left(dpcm\right)\)

^^

Bình luận (0)
TK
Xem chi tiết
EM
Xem chi tiết
HN
Xem chi tiết
HP
Xem chi tiết