Những câu hỏi liên quan
TH
Xem chi tiết
ZZ
8 tháng 2 2020 lúc 23:39

Đề sai sai sao á trần quốc huy

Bình luận (0)
 Khách vãng lai đã xóa
BQ
Xem chi tiết
NH
Xem chi tiết
H24
1 tháng 9 2018 lúc 21:35

p=a^2+b^2 (1)

p là số nguyên tố, p-5 chia hết 8 => p lẻ >=13  và a,b có 1 chẵn 1 lẻ

A=a.x^2-b.y^2 chia hết cho p, nên có thể viết  A = p(c.x^2 -d.y^2) với c,d phải nguyên

và c.p = a và d.p = b

thay (1) vào ta thấy c=a/(a^2+b^2) cần nguyên là vô lý vậy A muốn chia hết cho p <=> x và y cùng là bội số của p 

Bình luận (0)
DB
2 tháng 9 2018 lúc 8:34

Đặt \(p=8k+5\left(đk:K\in N\right)\)

Vì: \(\left(ax^2\right)^{4k+2}-\left(by^2\right)^{4k+2}⋮\left(ax^2-by^2\right)\)

\(\Rightarrow a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}⋮p\)

Mà \(a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}\)\(=\left(a^{4k+2}+b^{4k+2}\right).x^{8k+4}-b^{4k+2}\)\(\left(x^{8k+4}+y^{8k+4}\right)\)

Ta lại có: \(a^{4k+2}+b^{4k+2}=\left(a^2\right)^{2k+1}+\left(b^2\right)^{2k+1}⋮p\) ; p<d nên \(x^{8k+4}+y^{8k+4}⋮p\)

Làm tiếp đi 

Bình luận (0)
H24
5 tháng 5 2020 lúc 20:53

IQ vô cực

Bình luận (0)
 Khách vãng lai đã xóa
HM
Xem chi tiết
TK
Xem chi tiết
KT
8 tháng 8 2018 lúc 20:15

lam thế  nao vậy?

Bình luận (0)
GG

ko hỉu

Bình luận (0)
TL
30 tháng 4 2020 lúc 7:59

Giả thiết đã cho có thể viết lại được thành 3x2-2y2=1(1)

Từ đây, ta có x lẻ nên x2chia 8 dư 1 => 3x2 chia 8 dư 3

Từ đo ta có 2y2 chia 8 dư 2

=> y2 chia 8 dư 1. Do đó: x2-y2 chia 8 (2)

Tiếp theo ta sẽ chứng minh x2-y2chia hết cho 5 (3)

Chú ý rằng số dư của a2 (a thuộc Z) khi chia cho 5 là 0;1 và 4

Nếu y2 chia 5 thì từ (1) ta có 3x2 chia 5 dư 1, mâu thuẫn do só dư của 3x2 khi chia 5 chỉ có thể là 0;3;2Nếu y2 chia 5 dư 4 thì từ (1) ta có 3x2 chia 5 dư 4, mâu thuẫnDo đó ta phải có y2 chia 5 dư 1. Khi đó từ (1) ta cũng suy ra x2 chia 5 dư 1. Dẫn đến x2-y2 chia hết cho 5

Từ (2) và (3) với chú ý (5;8)=1 ta thu được x2-y2 chia hết cho 40 (đpcm)

Bình luận (1)
 Khách vãng lai đã xóa
DN
Xem chi tiết
NT
12 tháng 7 2023 lúc 12:24

\(\left(x-y\right)^2+2xy⋮4\)

\(\Rightarrow x^2-2xy+y^2+2xy⋮4\)

\(\Rightarrow x^2+y^2⋮4\)

\(\Rightarrow x^2⋮4;y^2⋮4\)

mà \(4⋮2\)

\(\Rightarrow x^2⋮2;y^2⋮2\Rightarrow x⋮2;y⋮2\)

\(\Rightarrow dpcm\)

Bình luận (0)
LP
12 tháng 7 2023 lúc 14:16

 Bài làm của bạn Trí từ chỗ \(x^2+y^2⋮4\Rightarrow x^2,y^2⋮4\) thì bạn còn phải xét thêm trường hợp \(x,y\) cùng lẻ nữa. Vì số chính phương khi chia cho 4 chỉ có thể dư 0 hoặc 1 nên nếu \(x,y\) lẻ thì \(x^2+y^2\) chia 4 dư 2, không thỏa mãn. Vậy mới suy ra được \(x^2,y^2⋮4\). Còn lại bạn đúng hết rồi.

Bình luận (0)
LM
Xem chi tiết
KN
11 tháng 8 2020 lúc 9:36

\(60=3.4.5\)

Ta cần chứng minh xyz chia hết cho 3 ; 4 và 5

\(∗\)Giả sử cả x ; y và z đều không chia hết cho 3

Khi đó x ; y và z chia cho 3 dư 1 hoặc dư 2 => x2 ; y2 và z2 chia cho 3 dư 1

\(\Rightarrow x^2+y^2\equiv1+1=2\) ( mod 3 )

Vô lí vì  \(z^2\equiv1\) ( mod 3 )

Vậy tồn tại ít nhất 1 số chia hết cho 3, do đó \(xyz⋮3\) ( 1 )

\(∗\)Giả sử cả x ; y và z không chia hết cho 4

Khi đó x ; y và z chia cho 4 dư 1 ; 2 hoặc 3

- TH1 : Cả x ; y và z lẻ => x2 ; y2 và z2 chia 4 dư 1

\(\Rightarrow x^2+y^2\equiv1+1=2\) ( mod 4 ) ( loại ) 

- TH2 : Có ít nhất 2 số chẵn => xyz chia hết cho 4

- TH3 : Có 1 số chẵn và 2 số lẻ

+) Với x ; y lẻ thì  \(z^2=x^2+y^2\equiv1+1=2\) ( mod 4 ) ( loại do z chẵn nên \(z^2\equiv0\) ( mod 4 ) )

+) Với x ; z lẻ thì \(y^2=z^2-x^2\equiv\left(z-x\right)\left(z+x\right)\) .Ta có bảng sau : 

 z x z-
 4m + 1 4n + 1 4( m - n )
 4m + 3 4n + 1 4 ( n - n ) + 2

Các trường hợp khác tương tự

Ta luôn có \(y^2=\left(z-x\right)\left(z+x\right)⋮8\)  . Trong khi đó ykhông chia hết cho 4 nhưng lại chia hết cho 8 => Mâu thuẫn 

Vậy tồn tại ít nhất 1 số chia hết cho 4 \(\Rightarrow xyz⋮4\) ( 2 )

\(∗\)Giả sử cả x ; y và z không chia hết cho 5

Khi đó x ; y và z chia cho 5 dư 1 ; 2 ; 3 hoặc 4 => x2 ; y2 và z2 chia cho 5 dư 1 hoặc -1

- TH1 : \(x^2\equiv1\) ( mod 5 ) ; \(y^2\equiv1\) ( mod 5 ) \(\Rightarrow z^2=x^2+y^2\equiv2\) ( mod 5 ) ( loại )

- TH2 : \(x^2\equiv-1\) ( mod 5 ) ; \(y^2\equiv-1\) ( mod 5 ) \(\Rightarrow z^2=x^2+y^2\equiv-1\) ( mod 5 ) ( loại )

- TH3 : \(x^2\equiv1\) ( mod 5 ) ; \(y^2\equiv-1\) ( mod 5 ) \(\Rightarrow z^2=x^2+y^2\equiv0\) ( mod 5 ) ( loại )

Vậy tồn tại ít nhất một số chia hết cho 5 \(\Rightarrow xyz⋮5\) ( 3 )

Từ ( 1 ) ; ( 2 ) và ( 3 ) \(\Rightarrow xyz⋮3.4.5=60\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
LM
11 tháng 8 2020 lúc 18:46

cảm ơn bạn Death Note đã giúp mk nhé!

Bình luận (0)
 Khách vãng lai đã xóa
LT
Xem chi tiết
L7
Xem chi tiết
TC
28 tháng 3 2022 lúc 22:24

refer

https://olm.vn/hoi-dap/detail/1303479279140.html

Bình luận (0)