Những câu hỏi liên quan
VD
Xem chi tiết
AC
28 tháng 11 2019 lúc 20:59

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
NH
8 tháng 2 2020 lúc 20:38

nó là số chính phương mà

Bình luận (0)
 Khách vãng lai đã xóa
HL
8 tháng 2 2020 lúc 20:41

Số chính phương mà

Bình luận (0)
 Khách vãng lai đã xóa
TM
8 tháng 2 2020 lúc 20:44

Bài giải

Ta có: 6100 = 650 × 2 = (650)2

Suy ra 6100 là một số chính phương

Vậy đề bài có chút sai sót, thông cảm

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
NP
Xem chi tiết
OO
13 tháng 6 2017 lúc 11:13

=> Căn a = b/c ﴾c khác 0﴿ ﴾số hữu tỉ thì có thể biểu diễn dưới dạng phân số như vậy﴿
<=> a = b^2/c^2
<=>b^2=a*c^2
mà b^2, c^2 là số chính phương
=> a là số chính phương
=> Trái giả thiết => Giả sử sai
=>a không phải là số chính phương => Căn a là số vô tỉ

Bình luận (0)
H24
6 tháng 3 2020 lúc 18:09

Trả lời:

+ Giả sử \(\sqrt{a}\notin I\)

\(\Rightarrow\sqrt{a}\inℚ\)

\(\Rightarrow a=\frac{m}{n}\)với\(\left(m,n\right)=1;m,n\inℕ\)

+ Vì a không là số chính phương

\(\Rightarrow\sqrt{a}\notinℕ\)

\(\Rightarrow\frac{m}{n}\notinℕ\)

\(\Rightarrow n>1\)

+ Vì \(\sqrt{a}=\frac{m}{n}\)

\(\Rightarrow a=\frac{m^2}{n^2}\)

\(\Rightarrow m^2=an^2\)

+ Vì \(n>1\)

\(\Rightarrow\)Giả sử n có ước nguyên tố là p

\(n\inℕ\)

\(m^2=an^2\)

\(\Rightarrow m⋮p\)

\(\Rightarrow\)m,n có ƯC là p (Trái với giả thiết (m,n) = 1)

\(\Rightarrow\)Giả sử \(\sqrt{a}\notin I\)sai

\(\Rightarrow\sqrt{a}\in I\)

Vậy nếu a không phải là số chính phương thì\(\sqrt{a}\)là số vô tỉ.

Hok tốt!

Good girl

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NP
11 tháng 1 2017 lúc 9:57

Tận cùng là 2;3;7;8 thì không là số chính phương.

a) Số 13579246890 là số chính phương vì có tận cùng bằng 0

b) Các số có tổng các chữ số là 2013 và 2015 có tận cung bằng 2;3;7;8.Nên các số đó không phải là số chính phương

Bình luận (0)
NH
12 tháng 1 2017 lúc 5:07

a) số 13578246890 ko là scp vì số đó chia hết cho 5 mà ko xhia hết cho 25

Bình luận (0)
DC
12 tháng 1 2017 lúc 21:34

a)Vì số trên chia hết cho 10 mà không chia hết cho 100 nên không phải là số chính phương.

b)Số có tổng các chữ số bằng 2013 chia hết cho 3 mà không chia hết cho 9.

  Số có tổng các chữ số bằng 2015 chia 3 dư 2 .

Bình luận (0)
NT
Xem chi tiết
CH
27 tháng 7 2016 lúc 16:15

Gọi số chính phương đã cho là a^2 (a là số tự nhiên) 
* C/m a^2 chia 3 dư 0 hoặc dư 1 
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2. 
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên) 
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0 
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1 
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1. 
Vậy số chính phương chia cho 3 dư 0 hoặc 1 
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé. 
* Mình nghĩ phải là số chính phương lẻ chia 8 dư 1 đúng không bạn? 
Chắc làm như trên cũng ra thôi nhưng dài lắm, mình thử làm thế này bạn xem có được không nhé: 
a^2 lẻ <=> a lẻ. Đặt a = 2k+3 (k là số tự nhiên) 
=> a^2 = (2k + 3)^2 = 4k^2 + 12k + 9 = 4k(k+3k) + 8 + 1 
- Nếu k lẻ => k + 3k chẵn hay k+3k chia hết cho 2 => 4k(k+3k) chia hết cho 8 => a^2 chia 8 dư 1 
- Nếu k chẵn hay k chia hết cho 2 => 4k(k+3) chia hết cho 8 => a^2 chia 8 dư 1. 

Vậy số chính phương khi chia cho 3 không thể dư 2 mà chỉ có thể dư 1 hoặc 0

Bình luận (0)
CH
27 tháng 7 2016 lúc 16:16

(2k+1) 2k (2k-1) 
(2k+1)^2 +4k^2 +(2k-1)^2=4k^2 +4k +1 +4k^2 +4k^2 -4k +1=12k^2+2 chia hết cho 2 không chia hết cho 4 nên không là số chính phương

Mình ko chắc đã đúng đâu

Bình luận (0)
LD
Xem chi tiết
MS
Xem chi tiết
H24
Xem chi tiết
NC
2 tháng 1 2020 lúc 15:26

Câu hỏi của nguyễn danh bảo - Toán lớp 6 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa