Những câu hỏi liên quan
PT
Xem chi tiết
PN
Xem chi tiết
H24
Xem chi tiết
DP
21 tháng 5 2017 lúc 14:10

\(\frac{2011\times2012+2013\times21+1991}{2012\times2013-2012\times2012}\)

\(=\frac{2011\times2012+2013\times\left(21+1991\right)}{2012\times2013-2012\times2012}\)

\(=\frac{2011\times2012+2013\times2012}{2012\times2013-2012\times2012}=\frac{2011}{2012}\)

Bình luận (0)
CM
Xem chi tiết
NL
Xem chi tiết
NN
20 tháng 4 2017 lúc 10:52

Đặt \(\hept{\begin{cases}a=x+2011\\b=y+2011\\c=z+2011\end{cases}}\) Ta có Hệ:

\(\hept{\begin{cases}\sqrt{a}+\sqrt{b+1}+\sqrt{c+2}\left(A\right)=\sqrt{b}+\sqrt{c+1}+\sqrt{a+2}\left(B\right)\\\sqrt{b}+\sqrt{c+1}+\sqrt{a+2}\left(B\right)=\sqrt{c}+\sqrt{a+1}+\sqrt{b+2}\left(C\right)\end{cases}}\)

Vai trò \(x,y,z\) bình đẳng

Giả sử \(c=Max\left(a;b;c\right)\) vì \(A=C\) ta có:

\(\sqrt{a}+\sqrt{b+1}+\sqrt{c+2}=\sqrt{c}+\sqrt{a+1}+\sqrt{b+2}\)

\(\Leftrightarrow\left(\sqrt{a+1}-\sqrt{a}\right)+\left(\sqrt{b+2}-\sqrt{b+1}\right)\)

\(=\sqrt{c+2}-\sqrt{c}=\left(\sqrt{c+2}-\sqrt{c+1}\right)+\left(\sqrt{c+1}-\sqrt{c}\right)\)

\(\Leftrightarrow\frac{1}{\sqrt{a+1}+\sqrt{a}}+\frac{1}{\sqrt{b+2}+\sqrt{b+1}}\)

\(=\frac{1}{\sqrt{c+2}+\sqrt{c+1}}+\frac{1}{\sqrt{c+1}+\sqrt{c}}\left(1\right)\)

Mặt khác \(\hept{\begin{cases}c\ge a\Rightarrow\frac{1}{\sqrt{a+1}+\sqrt{a}}\le\frac{1}{\sqrt{c+1}+\sqrt{c}}\\c\ge b\Rightarrow\frac{1}{\sqrt{b+2}+\sqrt{b+1}}\le\frac{1}{\sqrt{c+2}+\sqrt{c+1}}\end{cases}}\)

Suy ra \(\left(1\right)\) xảy ra khi \(a=b=c\Leftrightarrow x=y=z\) (Đpcm)

Bình luận (0)
LD
Xem chi tiết
H24
20 tháng 5 2018 lúc 12:51

\(\frac{2011.2013-2011.2012}{2012.2011+2011.2013}\)

\(=\frac{2011.\left(2013-2012\right)}{2011.\left(2012+2013\right)}\)

\(=\frac{2011.1}{2011.4025}\)

\(=\frac{1}{4025}\)

Bình luận (0)
LD
19 tháng 5 2018 lúc 16:37

bài này là bài Tính nha mọi người giải rõ ra giúp mik nha

Bình luận (0)
TA
19 tháng 5 2018 lúc 16:38

\(\frac{2011x2013-2012x2011}{2012x2011+2011x2013}\)

\(=\frac{2011x\left(2013-2012\right)}{2011x\left(2012+2013\right)}\)

\(=\frac{2011x1}{2011x4025}\)

\(=\frac{1}{4025}\)

Bình luận (0)
H24
Xem chi tiết
AN
1 tháng 7 2017 lúc 17:48

Giả sử z là số lớn nhất trong 3 số 

Từ đề bài ta có:

\(\sqrt{x+2011}+\sqrt{y+2012}+\sqrt{z+2013}=\sqrt{z+2011}+\sqrt{x+2012}+\sqrt{y+2013}\)

\(\Leftrightarrow\sqrt{x+2012}-\sqrt{x+2011}+\sqrt{y+2013}-\sqrt{y+2012}=\sqrt{z+2012}-\sqrt{z+2011}+\sqrt{z+2013}-\sqrt{z+2012}\)

\(\Leftrightarrow\frac{1}{\sqrt{x+2012}+\sqrt{x+2011}}+\frac{1}{\sqrt{y+2013}+\sqrt{y+2012}}=\frac{1}{\sqrt{z+2012}+\sqrt{z+2011}}+\frac{1}{\sqrt{z+2013}+\sqrt{z+2012}}\)

Ta lại có:

\(\hept{\begin{cases}\frac{1}{\sqrt{x+2012}+\sqrt{x+2011}}\ge\frac{1}{\sqrt{z+2012}+\sqrt{z+2011}}\\\frac{1}{\sqrt{y+2013}+\sqrt{y+2012}}\ge\frac{1}{\sqrt{z+2013}+\sqrt{z+2012}}\end{cases}}\)

Dấu = xảy ra khi x = y = z

Tương tự cho trường hợp x lớn nhất với y lớn nhất.

Bình luận (0)
H24
5 tháng 7 2017 lúc 18:01

fdy 'rshniytguo;yhuyt65edip;ioy86fo87ogtb eubuiltgr6sdwjhytguyh8 ban oi bai nay mac kho giai vao cut sit

Bình luận (0)
NT
Xem chi tiết
MN
23 tháng 2 2017 lúc 20:54

trước tiên bạn phải tính:

2013/1+2012/2+2011/3+.....+2/2012+1/2013

=1+2012/2)+(1+2011/3)+.....+(1+2/2012)+(1+1/2013) +1 {BƯỚC NÀY TÁCH 2013 RA LÀM 2013SỐ1 ĐỂ CÔNG VS CÁC THỪA SỐ CÒN LẠI}

=2014/2+2014/3+...+2014/2012+2014/2013+2014/2014

=2014.(1/2+1/3+....+1/2012+1/20131/2014

suy ra x=2014

Bình luận (1)
CL
Xem chi tiết