Những câu hỏi liên quan
BM
Xem chi tiết
SC
17 tháng 3 2019 lúc 22:15

ta có:

\(\left(3x-2y\right)^2\)>  0

\(\left(4y-6x\right)^2\)> 0

\(\left|xy-24\right|\)>    0

dấu "=" xảy ra (=)

\(\hept{\begin{cases}\left(3x-2y\right)^2=0\\\left(4y-6x\right)^2=0\\\left|xy-24\right|=0\end{cases}}\left(=\right)\hept{\begin{cases}3x-2y=0\\4y-6x=0\\xy-24=0\end{cases}}\)\(\)còn lại mk chưa tính ra

Bình luận (0)
BM
17 tháng 3 2019 lúc 22:17

bạn ơi nếu làm thế này là sai đó,các biến ở các hạnh tử giống nhau mà

Bình luận (0)
TT
4 tháng 3 2020 lúc 16:15

Ta thấy : \(-\left(3x-2y\right)^2\le0\forall x,y\)

\(-\left(4y-6x\right)^2\le0\forall x,y\)

\(-\left|xy-24\right|\le0\forall x,y\)

\(\Rightarrow-\left(3x-2y\right)^2+\left(4y-6x\right)^2+\left|xy-24\right|\le0\forall x,y\)

\(\Leftrightarrow-\left(3x-2y\right)^2+\left(4y-6x\right)^2+\left|xy-24\right|+2019\le2019\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(3x-2y\right)^2=0\\\left(4y-6x\right)^2=0\\\left|xy-24\right|=0\end{cases}}\)  \(\Leftrightarrow\hept{\begin{cases}3x=2y\\xy=24\end{cases}}\) 

Ta có : \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}=k\) \(\Rightarrow\hept{\begin{cases}x=2k\\y=3k\end{cases}}\)

Khi đó : \(xy=2k\cdot3k=6k^2=24\)

\(\Leftrightarrow k^2=4\Leftrightarrow k=\pm2\)

Với \(k=-2\Rightarrow\hept{\begin{cases}x=-4\\y=-6\end{cases}}\) ( thỏa mãn )

Với \(k=2\Rightarrow\hept{\begin{cases}x=4\\y=6\end{cases}}\) ( thỏa mãn )

Vậy : GTLN của \(-\left(3x-2y\right)^2+\left(4y-6x\right)^2+\left|xy-24\right|+2019=2019\) tại \(\left(x,y\right)\in\left\{\left(4,6\right);\left(-4,-6\right)\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
BK
Xem chi tiết
HD
Xem chi tiết
.
Xem chi tiết
LD
20 tháng 1 2021 lúc 20:38

M = ( 3x - 2y )2 - ( 4y - 6x )2 - | xy - 24 |

= 9x2 - 12xy + 4y2 - ( 16y2 - 48xy + 36x2 ) - | xy - 24 |

= 9x2 - 12xy + 4y2 - 16y2 + 48xy - 36x2 - | xy - 24 |

= -27x2 + 36xy - 12y2 - | xy - 24 |

= -3( 9x2 - 12xy + 4y2 ) - | xy - 24 |

= -3( 3x - 2y )2 - | xy - 24 |

Ta có : \(\hept{\begin{cases}-3\left(3x-2y\right)^2\le0\forall x,y\\-\left|xy-24\right|\le0\forall x,y\end{cases}}\Rightarrow-3\left(3x-2y\right)^2-\left|xy-24\right|\le0\forall x,y\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}3x-2y=0\left(1\right)\\xy-24=0\left(2\right)\end{cases}}\)

Từ (1) => 3x = 2y => x = 2/3y

Thế x = 2/3y vào (2) ta được :

(2) <=> 2/3y2 = 24

<=> y2 = 36

<=> y = ±6

Với y = 6 => x = 4

Với y = -6 => x = -4

Vậy giá trị lớn nhất của M là 0, đạt được khi \(\hept{\begin{cases}x=4\\y=6\end{cases}}\)hoặc \(\hept{\begin{cases}x=-4\\y=-6\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NH
12 tháng 3 2020 lúc 17:54

\(H=\left(3x-2y\right)^2-\left(4y-6x\right)^2-\left|xy-24\right|\)

\(H=\left(3x-2y\right)^2-\left(-2\right)^2.\left(3x-2y\right)^2-\left|xy-24\right|\)

\(H=\left(3x-2y\right)^2-4\left(2x-2y\right)^2-\left|xy-24\right|\)

\(H=-3.\left(3x-2y\right)^2-\left|xy-24\right|\)

Vì \(\hept{\begin{cases}\left(3x-2y\right)^2\ge0\forall x,y\\\left|xy-24\right|\ge0\forall x,y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-3\left(3x-2y\right)^2\le0\\-\left|xy-24\right|\le0\end{cases}}\)

\(\Leftrightarrow H=-3\left(3x-2y\right)^2-\left|xy-24\right|\le0\forall x,y\)

\(\Leftrightarrow H\le0\forall x,y\)

Dấu " = " xảy ra khi và chỉ 

\(\hept{\begin{cases}\left(3x-2y\right)^2=0\\\left|xy-24\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}3x=2y\\xy=24\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{2y}{3}\\\frac{2y}{3}.y=24\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{2y}{3}\\y^2=36\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}y=6\Leftrightarrow x=4\\y=-6\Leftrightarrow x=-4\end{cases}}\)

Vậy \(Max_H=0\Leftrightarrow\left(x;y\right)\in\left\{\left(4;6\right);\left(-4;-6\right)\right\}\)

Bạn tham khảo !!!

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết

\(H=\left(3x-2y\right)^2-\left(4y-6x\right)^2-\left|xy-24\right|\)

\(H=\left(3x-2y\right)^2-\left(-2\right)^2.\left(3x-2y\right)^2-\left|xy-24\right|\)

\(H=\left(3x-2y\right)^2-4\left(3x-2y\right)^2-\left|xy-24\right|\)

\(H=-3.\left(3x-2y\right)^2-\left|xy-24\right|\)

\(\text{Vì }\hept{\begin{cases}\left(3x-2y\right)^2\ge0\forall x,y\\\left|xy-24\right|\ge0\forall x,y\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}-3\left(3x-2y\right)^2\le0\\-\left|xy-24\right|\le0\end{cases}}\)

\(\Rightarrow H=-3\left(3x-2y\right)^2-\left|xy-24\right|\le0\forall x,y\)

\(\Rightarrow H\le0\forall x,y\)

\(\text{Dấu "=" xảy ra khi và chỉ khi }\)

\(\hept{\begin{cases}\left(3x-2y\right)^2=0\\\left|xy-24\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x=2y\\xy=24\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{2y}{3}\\\frac{2y}{3}.y=24\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{2y}{3}\\y^2=36\end{cases}\Rightarrow\hept{\begin{cases}x=\pm4\\y=\pm6\end{cases}}}\)

\(\text{Vậy Hmax = 0 xảy ra khi (x;y) }\in\left\{\left(4;6\right);\left(-4;6\right);\left(4;-6\right);\left(-4;-6\right)\right\}\)

Học tốt

Bình luận (0)
 Khách vãng lai đã xóa
H24
12 tháng 3 2020 lúc 15:37

Hông hiểu? 

Bình luận (0)
 Khách vãng lai đã xóa
TG
Xem chi tiết
CF
1 tháng 4 2020 lúc 9:20

Gửi lại : ~~ Bạn k hiểu ạ ??

Violympic toán 7

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
29 tháng 2 2020 lúc 15:23

Nguyễn Ngọc Lộc ?Amanda?Trần Quốc KhanhNguyễn Lê Phước ThịnhAkai HarumaPhạm Lan HươngHoàng Thị Ánh Phương Phạm Thị Diệu HuyềnVũ Minh TuấnTrên con đường thành công không có dấu chân của kẻ lười biếng

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
KN
4 tháng 3 2020 lúc 16:10

\(H=\left(3x-2y\right)^2-\left(4y-6x\right)^2-\left|xy-24\right|\)

\(=\left(3x-2y\right)^2-4\left(3x-2y\right)^2-\left|xy-24\right|\)

\(=-3\left(3x-2y\right)^2-\left|xy-24\right|\)

\(=-3\left[\left(3x-2y\right)^2+\left|xy-24\right|\right]\le0\)

Dấu "=" khi \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\xy=24\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\y=6\end{cases}}\)hoặc \(\hept{\begin{cases}x=-4\\y=-6\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
4 tháng 3 2020 lúc 22:28

\(H=\left(3x-2y\right)^2-\left(4x-6x\right)^2-\left|xy-24\right|\)

\(=\left(3x-2y\right)^2-4.\left(3x+2y\right)^2-\left|xy-24\right|\)

\(=-3.\left(3x-2y\right)^2-\left|xy-24\right|\)

\(=-3.\left[\left(3x-2y\right)^2+\left|xy-24\right|\right]\le0\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\xy=24\end{cases}=>\hept{\begin{cases}x=4\\y=6\end{cases}or\hept{\begin{cases}x=-4\\x=-6\end{cases}}}}\)

Bình luận (0)
 Khách vãng lai đã xóa