Cho S=3+3^2+3^3+. . .+3^100
CMR 2S-3 là lũy thừa của 3
Cho S=3+32+33+...+3100 .
a)S có chia hết cho 13 không? vì sao ?
b)CMR 2S+3 là một lũy thừa của 3
c)Tìm chữ số tận cùng của S
Cho S=3+32+33+........+3100
a, Chứng minh rằng S chia hết cho 4.
b, Chứng minh rằng 2S+3 là 1 lũy thừa của 3
4= 30+31(làm ra nháp)
S= 3+32+33+...+3100
S= (3+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^99+3^100)
S=(3x1+3x3)+(3^3x1+3^3x3)+(3^5x1+3^5x3)+...+(3^99x1+3^99x3)
S=3x(1+3)+3^3x(1+3)+3^5x(1+4)+...+3^99x(1+3)
S=3x4+3^3x4+3^5x4+...+3^99x4
S=4x(3+3^3+3^5+...+3^99)
=> S chia hết cho 4.
Đặt Tên Chi
Tìm kiếm
Báo cáo
Đánh dấu
24 tháng 12 2015 lúc 20:28
Cho S=3+32+33+........+3100
a, Chứng minh rằng S chia hết cho 4.
b, Chứng minh rằng 2S+3 là 1 lũy thừa của 3
Toán lớp 6
cho S3+3^2+3^3+......+3^100
a,chứng minh S chia hết cho 4
b,chứng minh 2S+3 là một lũy thừa của 3
c,tim chu so tan cung cua S
a, S=(3+3^2)+(3^3+3^4)+....+(3^99+3^100)
S=3.(1+3)+3^3.(1+3)+....+3^99+(1+3)
S=3.4+3^3.4+...+3^99.4 chia hết cho 4
Vậy S chia hết cho 4
Cho 3+32+33+...+3100
a.Chứng minh rằng S chia hết cho 4
b.Chứng minh 2S+3 là một lũy thừa của 3
c.Tìm chữ số tận cùng của S
Ta có S = 3+32+33+....+3100
= 3.(1+3)+32.(1+3)+.....+399.(1+3)
=3.4+32.4+......+399.4
Vì 3.4=12 => 32.4 chia hết cho 4
.............
399.4 chia hết cho 4
=> S chia het cho 4
Cho S=3+32+33+........+3100
a, Chứng minh rằng S chia hết cho 4
b, Chứng minh rằng 2S +3 là 1 lũy thừa của 3
c, Tìm chữ số tận cùng của S
Cho S = 3 + 32 + 33 + ... + 3100
Chứng minh rằng 2S + 3 là một lũy thừa của 3
Tìm chữ số tận cùng củ S
S = 3 + 32 + 33 + ... + 3100
=> 3S = 32 + 33 + ... + 3100+3101
=> 2S = 3101 - 3
=> 2S + 3 = 3101 + 3 - 3 = 3101
=> 2S + 3 là 1 lũy thừa của 3 ( ĐPCM)
Cho Mình Tích Nha
S = 3 + 32 + 33 + ... + 3100
=> 3S = 32 + 33 + ... + 3100+3101
=> 2S = 3101 - 3
=> 2S + 3 = 3101 + 3 - 3 = 3101
=> 2S + 3 là 1 lũy thừa của 3 ( ĐPCM)
Cho S = 1 + 3 + 32 + 33 + ... + 399. Chứng minh 2S + 1 là lũy thừa của 3.
S=1+3+3^2+3^3+...+3^99
3S=3+3^2+3^3+3^4+...+3^99+3^100
3S-S=3^100-1
\(\Rightarrow\)2S=3^100-1
\(\Rightarrow\)2S+1=3^100-1+1=3^100.Vì 3^100 là lũy thừa của 3 mà 3^100=2S+1
Vậy 2S+1 là lũy thừa của 3
K ĐÚNG CHO MÌNH NHA.
Cho S= 3+3^2+3^3+... + 3^100
a) Chứng minh rằng S chia hết cho 4
b) Chứng minh rằng 2S +3 là một lũy thừa của 3
c) Tìm chữ số tận cùng của S
Guip mik joi mjk cko lihe nke
Cho S=1+3^1+3^2+.....+3^99
Chứng minh rằng 2S+1 là một lũy thừa của 10
cậu làm cái này như kiểu là hoá đấy chứ