A= n mũ 2 + n +1 (n thuộc N) chứng tỏ A là số lẻ
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng tỏ rằng biểu thức n mũ 2 +n+1 là số tự nhiên lẻ với mọi giá trị của n thuộc N
a, Tìm chữ số tận cùng của số tự nhiên a để có ( a mũ 2 + 1 ) chia hết cho 2.
b, Cho n là số tự nhiên lẻ, tìm số dư khi chia n mũ 2 cho 8
c, Cho a,b thuộc N, chứng tỏ rằng ab . ( a+b) chia hết cho 2
d, Tìm x,y thuộc N biết xy. (x+y) = 570319
Với n là số nguyên chứng tỏ rằng
a, A=(n-4).(n-15) là số chẵn
b, B= n mũ 2 -n-1 là số lẻ
1. Cho A là tổng các số lẻ có 2 chữ số: 11+13+15+.....+99. Không tính giá trị của A, hãy cho biết A là số chẵn hay số lẻ.
2. Chứng tỏ rằng với mọi số tự nhiên n thì n mũ 2+n+1 không chia hết cho 5
3. Chứng tỏ rằng số a=9 mũ 11 +1 chia hết cho cả 2 và 5
4.Chứng tỏ rằng tích n(n+3) là số chẵn với mọi số tự nhiên
#ha le ha ban trả lời câu 2,3,4 giúp minh với
chứng tỏ rằng với mọi số tự nhiên n thì n mũ 2 + n + 1 là số lẻ
n2+n+1= n(n+1)+1
Vì n và n+1 là 2 số tự nhiên liên tiếp =>n(n+1)\(⋮\)2 => n(n+1) chẵn => n(n+1)+1 lẻ => điều phải chứng minh
A=45 mũ n+2 mũ 45+n mũ 2 [ n thuộc N*] chứng tỏ rằng A không chia hết cho 10
bai nay to ko biet sfdavvasva
Bài 1: tìm x, biết:
a) {x-[25-(9 mũ 2 -16.5) mũ 30 .24 mũ 3]-14}=1
b) (x+1)+(x+2)+....+(x+100)=7450
Bài 2: tính tổng
S=3+6+...+2016
Bài 3: a) Chứng tỏ 7 mũ n cộng 4( số 4 là số mũ)-7 mux n chia hết cho 30, với n thuộc N
b) 3 mũ n cộng 2( 2 là số mũ) +3 mũ n chia hết cho 10 với n thuộc N
Bài 1:
a){x-[25-(92-16.5)30.243]-14}=1
=>{x-[25-1.243]-14}=1
=>x-(-13799)-14=1
=>x-(-13813)=1
=>x=1+(-13813)
=>x=-13812
b) (x+1)+(x+2)+....+(x+100)=7450
=>100x+(1+2+...+100)=7450
=>100x+5050=7450
=>x=(7450-5050):100
=>x=24
Bài 2:
S=3+6+...+2016
S=(2016-3):3+1=672 ( số số hạng)
S=(2016+3)x672:2=678384
Bài 3 dài lắm mỏi tay lắm rùi
Bài 1.chứng tỏ rằng nếu căn x là một số hữu tỉ khác 0 thì X phải là một số hữu tỉ có dạng a mũ 2 phần b mũ 2 trong đó A, B là những số nguyên dương và a mũ 2 trên b mũ 2 là một phân số tối giản.
Bài 2.tìm gt nguyên x sao cho (3+√x) /(2-√x) có gt nguyên.
Bài 3. chứng tỏ rằng với số tự nhiên n lớn hơn 0 ta có
1+1/n²+1/(n+1)²=(n²+n+1)²/(n²(n+1)²)
Ta có:
\(VT=1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}\)
\(=\frac{n^2\left(n+1\right)^2}{n^2\left(n+1\right)^2}+\frac{\left(n+1\right)^2}{n^2\left(n+1\right)^2}+\frac{n^2}{n^2\left(n+1\right)^2}\)
\(=\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+n^2+2n+1+n^2}{n^2\left(n+1\right)}\left(1\right)\)
\(VP=\frac{\left(n^2+n+1\right)}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)+1\right]^2}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+1+2\left[n\left(n+1\right)\right]}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+1+2\left(n^2+1\right)}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+1+2n^2+2n}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+2n+1+2n^2}{n^2\left(n+1\right)^2}\left(2\right)\)
Từ (1) và (2)
=>đpcm
Vì \(\sqrt{x}\)là một số hữu tỉ
\(\Rightarrow\sqrt{x}\)có dạng \(\frac{a}{b}\)(\(\frac{a}{b}\)là một phân số tối giản)
Vì \(\sqrt{x}\ge0\)và theo đề bài \(\frac{a}{b}\ne0\Rightarrow\frac{a}{b}\ge0\)
\(\Rightarrow a,b\)là những số nguyên dương (1)
Vì \(\sqrt{x}\)có dạng \(\frac{a}{b}\Rightarrow\left(\sqrt{x}\right)^2=\left(\frac{a}{b}\right)^2\Rightarrow x=\frac{a^2}{b^2}\)(2)
Vì \(\frac{a}{b}\)là phân số tối giản
\(\Rightarrow a,b\)là hai số nguyên tố cùng nhau
\(\Rightarrow\)ƯCLN(a,b)=1
Vì \(a^2\) có Ư(a), \(b^2\)có Ư(b)
\(\Rightarrow a^2,b^2\) là hai số nguyên tố cùng nhau
\(\Rightarrow\)ƯCLN(\(a^2,b^2\))=1
\(\Rightarrow\frac{a^2}{b^2}\) là phân số tối giản (3)
Từ (1), (2) và (3)
=>đpcm
Bài 1:
a) Chứng minh rằng số chính phương lẻ thì chia 8 dư 1
b) Chứng tỏ rằng nếu 2n + 1 và 3n + 1 là các số chính phương lẻ thì n chia hết cho 40 ( n thuộc N*)
a) Nếu n là số chính phương lẻ thì n = (2k + 1)2 = 4k2 + 4k + 1 = 4k(k+1) + 1
Ta thấy ngay k(k + 1) chia hết cho 2, vậy thì 4k(k + 1) chia hết cho 8.
Vậy n chia 8 dư 1.
b) Em tham khảo tại link dưới đây nhé.
Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath