Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NM
Xem chi tiết
NN
Xem chi tiết
BT
Xem chi tiết
TO
Xem chi tiết
HH
23 tháng 7 2015 lúc 10:57

làm 1 bài thôi có được không.

Bình luận (0)
NX
12 tháng 10 2015 lúc 11:27

#ha le ha ban trả lời câu 2,3,4 giúp minh với

Bình luận (0)
TN
Xem chi tiết
NL
9 tháng 11 2021 lúc 11:17

n2+n+1= n(n+1)+1

Vì n và n+1 là 2 số tự nhiên liên tiếp =>n(n+1)\(⋮\)2 => n(n+1) chẵn => n(n+1)+1 lẻ => điều phải chứng minh

Bình luận (0)
 Khách vãng lai đã xóa
LL
Xem chi tiết
ND
26 tháng 3 2018 lúc 20:20

bai nay to ko biet sfdavvasva

Bình luận (0)
CD
Xem chi tiết
H24
7 tháng 10 2017 lúc 13:08

Bài 1:

a){x-[25-(92-16.5)30.243]-14}=1

=>{x-[25-1.243]-14}=1

=>x-(-13799)-14=1

=>x-(-13813)=1

=>x=1+(-13813)

=>x=-13812

b) (x+1)+(x+2)+....+(x+100)=7450

=>100x+(1+2+...+100)=7450

=>100x+5050=7450

=>x=(7450-5050):100

=>x=24

Bài 2:

S=3+6+...+2016

S=(2016-3):3+1=672 ( số số hạng)

S=(2016+3)x672:2=678384

Bài 3 dài lắm mỏi tay lắm rùi

Bình luận (0)
DB
Xem chi tiết
H24
2 tháng 11 2019 lúc 21:11

Ta có:

\(VT=1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}\)

\(=\frac{n^2\left(n+1\right)^2}{n^2\left(n+1\right)^2}+\frac{\left(n+1\right)^2}{n^2\left(n+1\right)^2}+\frac{n^2}{n^2\left(n+1\right)^2}\)

\(=\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)\right]^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)\right]^2+n^2+2n+1+n^2}{n^2\left(n+1\right)}\left(1\right)\)

\(VP=\frac{\left(n^2+n+1\right)}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)+1\right]^2}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)\right]^2+1+2\left[n\left(n+1\right)\right]}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)\right]^2+1+2\left(n^2+1\right)}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)\right]^2+1+2n^2+2n}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)\right]^2+2n+1+2n^2}{n^2\left(n+1\right)^2}\left(2\right)\)

Từ (1) và (2)

=>đpcm

Bình luận (0)
 Khách vãng lai đã xóa
H24
2 tháng 11 2019 lúc 21:23

Vì \(\sqrt{x}\)là một số hữu tỉ

\(\Rightarrow\sqrt{x}\)có dạng \(\frac{a}{b}\)(\(\frac{a}{b}\)là một phân số tối giản)

Vì \(\sqrt{x}\ge0\)và theo đề bài \(\frac{a}{b}\ne0\Rightarrow\frac{a}{b}\ge0\)

\(\Rightarrow a,b\)là những số nguyên dương (1)

Vì \(\sqrt{x}\)có dạng \(\frac{a}{b}\Rightarrow\left(\sqrt{x}\right)^2=\left(\frac{a}{b}\right)^2\Rightarrow x=\frac{a^2}{b^2}\)(2)

Vì \(\frac{a}{b}\)là phân số tối giản

\(\Rightarrow a,b\)là hai số nguyên tố cùng nhau

\(\Rightarrow\)ƯCLN(a,b)=1

Vì \(a^2\) có Ư(a), \(b^2\)có Ư(b)

\(\Rightarrow a^2,b^2\) là hai số nguyên tố cùng nhau

\(\Rightarrow\)ƯCLN(\(a^2,b^2\))=1

\(\Rightarrow\frac{a^2}{b^2}\) là phân số tối giản (3)

Từ (1), (2) và (3)

=>đpcm

Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết
CH
5 tháng 3 2018 lúc 9:52

a) Nếu n là số chính phương lẻ thì n = (2k + 1)2 = 4k2 + 4k + 1 = 4k(k+1) + 1

Ta thấy ngay k(k + 1) chia hết cho 2, vậy thì 4k(k + 1) chia hết cho 8.

Vậy n chia 8 dư 1.

b) Em tham khảo tại link dưới đây nhé.

Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

Bình luận (0)