Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
LA
Xem chi tiết
UN
25 tháng 5 2017 lúc 19:13

Do x+y thuộc z=> x và y đều là số nguyên 

Mà 1/x + 1/y thuộc Z thì x = y= 1 hoặc x=y=-1

Bình luận (0)
ND
31 tháng 8 2020 lúc 18:44

\(\text{Có thể x=y=\pm2 nữa nhé}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
YS
5 tháng 7 2017 lúc 8:37

a là số tự nhiên > 0. giả sử có m,n > 0 ∈ Z để:

2a + 1 = n^2 ﴾1﴿

3a +1 = m^2 ﴾2﴿

từ ﴾1﴿ => n lẻ, đặt: n = 2k+1, ta được:

2a + 1 = 4k^2 + 4k + 1 = 4k﴾k+1﴿ + 1

=> a = 2k﴾k+1﴿

vậy a chẵn .

a chẳn => ﴾3a +1﴿ là số lẻ và từ ﴾2﴿ => m lẻ, đặt m = 2p + 1

﴾1﴿ + ﴾2﴿ được:

5a + 2 = 4k﴾k+1﴿ + 1 4p﴾p+1﴿ + 1

=> 5a = 4k﴾k+1﴿ + 4p﴾p+1﴿

mà 4k﴾k+1﴿ và 4p﴾p+1﴿ đều chia hết cho 8 => 5a chia hết cho 8 => a chia hết cho 8

ta cần chứng minh a chia hết cho 5:

chú ý: số chính phương chỉ có các chữ số tận cùng là; 0,1,4,5,6,9

xét các trường hợp:
 a = 5q + 1=> n^2 = 2a+1 = 10q + 3 có chữ số tận cùng là 3 ﴾vô lý﴿

a =5q +2 => m^2 = 3a+1= 15q + 7 có chữ số tận cùng là 7 ﴾vô lý﴿ ﴾vì a chẵn => q chẵn 15q tận cùng là 0 => 15q + 7 tận cùng là 7﴿

a = 5q +3 => n^2 = 2a +1 = 10a + 7 có chữ số tận cùng là 7 ﴾vô lý﴿

a = 5q + 4 => m^2 = 3a + 1 = 15q + 13 có chữ số tận cùng là 3 ﴾vô lý﴿

=> a chia hết cho 5 5,8 nguyên tố cùng nhau => a chia hết cho 5.8 = 40

hay : a là bội số của 40

Bình luận (0)
VT
26 tháng 7 2023 lúc 20:36

a là số tự nhiên > 0. giả sử có m,n > 0 ∈ Z để:

2a + 1 = n^2 ﴾1﴿

3a +1 = m^2 ﴾2﴿

từ ﴾1﴿ => n lẻ, đặt: n = 2k+1, ta được:

2a + 1 = 4k^2 + 4k + 1 = 4k﴾k+1﴿ + 1

=> a = 2k﴾k+1﴿

vậy a chẵn .

a chẳn => ﴾3a +1﴿ là số lẻ và từ ﴾2﴿ => m lẻ, đặt m = 2p + 1

﴾1﴿ + ﴾2﴿ được:

5a + 2 = 4k﴾k+1﴿ + 1 4p﴾p+1﴿ + 1

=> 5a = 4k﴾k+1﴿ + 4p﴾p+1﴿

mà 4k﴾k+1﴿ và 4p﴾p+1﴿ đều chia hết cho 8 => 5a chia hết cho 8 => a chia hết cho 8

ta cần chứng minh a chia hết cho 5:

chú ý: số chính phương chỉ có các chữ số tận cùng là; 0,1,4,5,6,9

xét các trường hợp:
 a = 5q + 1=> n^2 = 2a+1 = 10q + 3 có chữ số tận cùng là 3 ﴾vô lý﴿

a =5q +2 => m^2 = 3a+1= 15q + 7 có chữ số tận cùng là 7 ﴾vô lý﴿ ﴾vì a chẵn => q chẵn 15q tận cùng là 0 => 15q + 7 tận cùng là 7﴿

a = 5q +3 => n^2 = 2a +1 = 10a + 7 có chữ số tận cùng là 7 ﴾vô lý﴿

a = 5q + 4 => m^2 = 3a + 1 = 15q + 13 có chữ số tận cùng là 3 ﴾vô lý﴿

=> a chia hết cho 5 5,8 nguyên tố cùng nhau => a chia hết cho 5.8 = 40

hay : a là bội số của 40

Bình luận (0)
BB
Xem chi tiết
TD
6 tháng 7 2017 lúc 21:03

a) \(x=\frac{\left(x+y\right)+\left(x-y\right)}{2};y=\frac{\left(x+y\right)-\left(x-y\right)}{2}\)

Tổng, hiệu của hai số hữu tỉ là một số hữu tỉ . Thương của 1 số hữu tỉ với 1 số hữu tỉ ( khác 0 ) cũng là 1 số hữu tỉ.

Vậy x,y đều là các số hữu tỉ, không thể là số vô tỉ.

b) x và y có thể là số vô tỉ. 

Ví dụ : x = \(-\sqrt{2}\)\(y=\sqrt{2}\)\(\Rightarrow x+y=-\sqrt{2}+\sqrt{2}=0\)

\(\Rightarrow\frac{x}{y}=\frac{-\sqrt{2}}{\sqrt{2}}=-1\)

Bình luận (0)
NT
Xem chi tiết
DH
30 tháng 8 2021 lúc 21:52

\(x=\frac{a}{13},y=\frac{a+1}{13},a\inℕ^∗\)

\(x< \frac{4}{5}< y\Leftrightarrow\frac{a}{13}< \frac{4}{5}< \frac{a+1}{13}\)

\(\Leftrightarrow\frac{5a}{65}< \frac{52}{65}< \frac{5a+5}{65}\)

\(\Leftrightarrow5a< 52< 5a+5\Leftrightarrow a< \frac{52}{5}< a+1\)

mà \(a\)là số nguyên nên \(a=10\).

Vậy \(x=\frac{10}{13},y=\frac{11}{13}\).

Bình luận (0)
 Khách vãng lai đã xóa
MY
Xem chi tiết
TL
Xem chi tiết
OM
Xem chi tiết
TD
Xem chi tiết
EF
Xem chi tiết
H24
20 tháng 9 2019 lúc 13:35

a) Ta có: \(\frac{\left(x+y\right)+\left(x-y\right)}{2}=x\)( x + y và x - y là số hữu tỉ nên \(\frac{\left(x+y\right)+\left(x-y\right)}{2}\)là số hữu tỉ hay x là số hữu tỉ)

 \(\frac{\left(x+y\right)-\left(x-y\right)}{2}=y\)( x + y và x - y là số hữu tỉ nên \(\frac{\left(x+y\right)+\left(x-y\right)}{2}\)là số hữu tỉ hay y là số hữu tỉ)

b) x và y có thể là số vô tỉ

VD: \(x=\sqrt{6};y=-\sqrt{6}\)

\(\Rightarrow\hept{\begin{cases}x+y=0\\\frac{x}{y}=-1\end{cases}}\)(đều là số hữu tỉ)

Bình luận (0)
KV
20 tháng 9 2019 lúc 13:36

a, \(x=\frac{\left(x+y\right)+\left(x-y\right)}{2}\)         ;         \(y=\frac{\left(x+y\right)-\left(x-y\right)}{2}\)

tổng, hiệu của 2 số hữu tỉ là một số hữu tỉ. Thương của một số hữu tỉ với một số hữu tỉ khác 0 cùng là một số hữu tỉ. 

Vậy x,y đều là các số hữu tỉ không thể là số vô tỉ.

b, x và y có thể là số vô tỉ . Chẳng hạn \(x=-\sqrt{2}\) \(y=\sqrt{2}\) thì \(x+y=-\sqrt{2}+\sqrt{2}=0\)

\(\frac{x}{y}=\frac{-\sqrt{2}}{\sqrt{2}}=-1\)

Bình luận (0)
VN
Xem chi tiết