Tính giá trị của biểu thức.
2012×2013+2011
2014×2013-2015
Tính giá trị biểu thức :
2012 x 2013 + 2011 / 2014 x 2013 - 2015
2012×2013+2011/2014×2013-2015=2012×2013+2011/(2012+2)×2013-2015=2012×2013+2011/2012×2013+2×2015=2012×2013+2011/2012×2013+4026-2015=2012×2013+2011/2012×2013+2011=1
tìm giá trị của biểu thức sau bằng cách hợp lí:
C= \(\dfrac{2014\left(2015^2+2016\right)-2016\left(2015^2-2014\right)}{2014\left(2013^2-2012\right)-2012\left(2013^2+2014\right)}\)
\(C=\dfrac{2014\left(2015^2+2016\right)-2016\left(2015^2-2014\right)}{2014\left(2013^2-2012\right)-2012\left(2013^2+2014\right)}\)
\(=\dfrac{2.2014.2016+2014.2015^2-2016.2015^2}{2014.2013^2-2012.2013^2-2.2012.2014}\)
\(=\dfrac{2.\left(2015+1\right)\left(2015-1\right)-2.2015^2}{2.2013^2-2.\left(2013+1\right)\left(2013-1\right)}\)
\(=\dfrac{2.\left(2015^2-1\right)-2.2015^2}{2.2013^2-2.\left(2013^2-1\right)}=\dfrac{-2}{2}=-1\)
Tính giá trị biểu thức sau :
2012 * 2013 + 2011
---------------------------
2014 * 2013 - 2015
Giá trị biểu thức 2012 x 2013+2011/2014x2013 -2015
Giá trị biểu thức 2012 x 2013+2011/2014x2013 -2015
Giá trị biểu thức 2012 x 2013+2011/2014x2013 -2015
Giá trị biểu thức 2012 x 2013+2011/2014x2013 -2015
Giá trị biểu thức 2012 x
Giá trị biểu thức 2012 x 2013+2011/2014x2013 -2015
ai h minh h lai 2013+2011/2014x2013 -2015
Cho các số dương x, y thỏa mãn hệ thức x2012+y2012=x2013+y2013=x2014+y2014.
Tính giá trị biểu thức P= x2015+y2015.
\(\Rightarrow x^{2014}+y^{2014}-2\left(x^{2013}+y^{2013}\right)+x^{2012}+y^{2012}=0\)
\(\Leftrightarrow x^{2012}.\left(x-1\right)^2+y^{2012}.\left(y-1\right)^2=0\)
\(\Rightarrow x=1;y=1\)
\(\Rightarrow P=2\)
giá trị của biểu thức:(2014+2013/2+2012/3+...+2/2013+1/2014)/(1/2+1/3+...+1/2014+1/2015)
"ai giải được em cảm ơn nhiều"
tính giá trị của biểu thức : 2012nhan 2013 + 2011/2014 nhan 2013 -2015
Tìm giá trị nhỏ nhất của biểu thức:
A=|x-2011|+|x-2012|+|x-2013|+|x-2014|+|x-2015|
\(A=\left|x-2011\right|+\left|x-2012\right|+\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)
\(=\left(\left|x-2011\right|+\left|x-2015\right|\right)+\left(\left|x-2012\right|+\left|x-2014\right|\right)+\left|x-2013\right|\)
Đặt \(B=\left|x-2011\right|+\left|x-2015\right|\)
\(=\left|x-2011\right|+\left|2015-x\right|\ge\left|x-2011+2015-x\right|=4\left(1\right)\)
Dấu"=" xảy ra \(\Leftrightarrow\left(x-2011\right)\left(2015-x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-2011\ge0\\2015-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2011< 0\\2015-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge2011\\x\le2015\end{cases}}\)hoặc \(\hept{\begin{cases}x< 2011\\x>2015\end{cases}\left(loai\right)}\)
\(\Leftrightarrow2011\le x\le2015\)
Đặt \(C=\left|x-2012\right|+\left|x-2014\right|\)
\(=\left|x-2012\right|+\left|2014-x\right|\ge\left|x-2012+2014-x\right|=2\left(2\right)\)
Dấu"="xảy ra \(\Leftrightarrow\left(x-2012\right)\left(2014-x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-2012\ge0\\2014-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2012< 0\\2014-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge2012\\x\le2014\end{cases}}\)hoặc\(\hept{\begin{cases}x< 2012\\x>2014\end{cases}\left(loai\right)}\)
\(\Leftrightarrow2012\le x\le2014\)
Ta có: \(\left|x-2013\right|\ge0;\forall x\left(3\right)\)
Dấu"="Xảy ra \(\Leftrightarrow\left|x-2013\right|=0\)
\(\Leftrightarrow x=2013\)
Từ (1),(2) và (3) \(\Rightarrow B+C+\left|x-2013\right|\ge6\)
Hay \(A\ge6\)
Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}2011\le x\le2015\\2012\le x\le2014\\x=2013\end{cases}}\)\(\Leftrightarrow x=2013\)
Vậy \(A_{min}=6\Leftrightarrow x=2013\)
tính giá trị biểu thức 2013+2013/1+2 +2013/1+2+3+...........+2013/1+2+3+.....+2012