Những câu hỏi liên quan
H24
Xem chi tiết
NM
Xem chi tiết
VC
Xem chi tiết
H24
14 tháng 12 2016 lúc 20:16

Nguyên trang bất đăng thức Bunhacoxki  rồi. 

Bình luận (0)
DG
Xem chi tiết
AN
28 tháng 9 2018 lúc 13:50

\(xy+yz+zx=xyz\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\) thì

\(\hept{\begin{cases}a+b+c=1\\P=\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{1}{16}\end{cases}}\)

Ta co:

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{64}+\frac{1+c}{64}\ge\frac{3a}{16}\)

\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\frac{3a}{16}-\frac{b}{64}-\frac{c}{64}-\frac{1}{32}\)

Từ đây ta co:

\(P\ge\left(a+b+c\right)\left(\frac{3}{16}-\frac{1}{64}-\frac{1}{64}\right)-\frac{3}{32}=\frac{1}{16}\)

Bình luận (0)
HN
Xem chi tiết
DQ
Xem chi tiết
NT
21 tháng 2 2022 lúc 15:35

Theo bđt AM-GM 

\(x+\dfrac{1}{x}\ge2\sqrt{\dfrac{x.1}{x}}=2\Rightarrow\left(x+\dfrac{1}{x}\right)^2\ge4\)

\(y+\dfrac{1}{y}\ge2\sqrt{\dfrac{y.1}{y}}=2\Rightarrow\left(y+\dfrac{1}{y}\right)^2\ge4\)

Cộng vế với vế ta có đpcm 

Dấu ''='' xảy ra khi x = y = 1 

 

Bình luận (0)
QH
Xem chi tiết
LA
14 tháng 8 2016 lúc 22:07

Áp dụng BĐT Cô si ta có:

\(x+y\ge2\sqrt{xy}=2\cdot\frac{1}{\sqrt{z}};y+z\ge2\sqrt{yz}=2\cdot\frac{1}{\sqrt{x}};z+x\ge2\sqrt{xz}=2\cdot\frac{1}{\sqrt{y}}.\)( vì xyz=1)

=> P\(\ge\)\(\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}\)\(\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(\hept{\begin{cases}a=y\sqrt{y}+2z\sqrt{z}\\b=z\sqrt{z}+2x\sqrt{x}\\c=x\sqrt{x}+2y\sqrt{y}\end{cases}\left(a;b;c\ge0\right)}\)<=> \(\hept{\begin{cases}4a+b=2c+9z\sqrt{z}\\4b+c=2a+9x\sqrt{x}\\4c+a=2b+9y\sqrt{y}\end{cases}}\)

<=> \(\hept{\begin{cases}z\sqrt{z}=\frac{4a+b-2c}{9}\\x\sqrt{x}=\frac{4b+c-2a}{9}\\y\sqrt{y}=\frac{4c+a-2b}{9}\end{cases}}\)

Do đó:

\(\ge\)\(\frac{2}{9}\cdot\left(\frac{4a+b-2c}{c}+\frac{4b+c-2a}{a}+\frac{4c+a-2b}{b}\right)\)

<=> P \(\ge\)\(\frac{2}{9}\left(4\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right)+\left(\frac{b}{c}+\frac{c}{a}+\frac{a}{b}\right)-6\right)\)

<=> P \(\ge\frac{2}{9}\cdot\left(4\cdot3\cdot\sqrt[3]{\frac{a}{c}\cdot\frac{b}{a}\cdot\frac{c}{b}}+3\cdot\sqrt[3]{\frac{b}{c}\cdot\frac{c}{a}\cdot\frac{a}{b}}-6\right)\)( Áp dụng BĐT Cô si cho 3 số ko âm)

<=> P \(\ge\frac{2}{9}\left(12+3-6\right)=2\)( đpcm)

Dấu = khi x=y=z=1.

Bình luận (0)
QH
Xem chi tiết
QH
9 tháng 10 2016 lúc 20:22

xin lỗi, đề bài là y^2 nhá, mình quên

Bình luận (0)
LT
Xem chi tiết
TN
6 tháng 11 2017 lúc 17:39

Áp dụng BĐT AM-GM ta có:

\(x+y+z\ge3\sqrt[3]{xyz}\)

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\)

Nhân theo vế 2 BĐT trên ta có:

\(VT\ge3^2\cdot\sqrt[3]{xyz\cdot\frac{1}{xyz}}=9=VP\)

Xảy ra khi \(a=b=c\)

Bình luận (0)