tìm các cặp số nguyên x,y
(x-2)(2y+1)=5
xy+12=x+y
Tìm cặp số nguyên x,y biết:
(3x-1).y = -123xy - 3x - y = 05xy - 5x + 2y = -16(3x-1).y = -12<=> 3x-1 và y là Ư của -12 ={ \(\mp1;2;3;4;6;12\) }=> ta xét từng trường hợp : ....
tìm các cặp số nguyên (x;y) thỏa mãn : \(2x^2+2y^2+3x-6y=5xy-7\)
\(2x^2+2y^2+3x-6y=5xy-7\)
\(\Leftrightarrow2x^2+2y^2+3x-6y-5xy=-7\)
\(\Leftrightarrow2x^2-4xy+2y^2-xy+3x-6y=-7\)
\(\Leftrightarrow2x\left(x-2y\right)-y\left(x-2y\right)+3\left(x-2y\right)=-7\)
\(\Leftrightarrow\left(2x-y+3\right)\left(x-2y\right)=-7\)
vì x,y nguyên nên \(\hept{\begin{cases}2x-y+3\\x-2y\end{cases}\in Z}\)
Ta có : -7 = ( -7 ) . 1 = (-1 ) . 7
Tới đây bạn tự làm nhé
Tìm các số x,y nguyên tm: \(3x^2-2y^2-5xy+x-2y-7=0\)
\(3x^2-2y^2-5xy+x-2y-7=0\\ \Leftrightarrow\left(3x^2-6xy\right)+\left(xy-2y^2\right)+\left(x-2y\right)=7\\ \Leftrightarrow3x\left(x-2y\right)+y\left(x-2y\right)+\left(x-2y\right)=7\\ \Leftrightarrow\left(x-2y\right)\left(3x+y+1\right)=7=\left(-1\right)\left(-7\right)=1\cdot7\)
Từ đó liệt kê ra nhé
Tìm các cặp số nguyên tố x,y thỏa mãn :
(x+1).(2y-1)=12
Mọi người giúp mình với, mình c ơn ạ ...
tìm số nguyên x,y biết
(3x-1)y=-125xy+5x+2y=-16(3x-1).y = -12<=> 3x-1 và y là Ư của -12 ={ 1;2;3;4;6;12∓1;2;3;4;6;12 }
=> ta xét từng trường hợp : ....
1. (3x-1)y=-12 suy ra \(3x-1\inƯ\left(-12\right)\)(em tự liệt kê nhé!)
Lại có 3x-1 chia 3 dư 2(thiếu 1) nên \(3x-1\in\left\{-1;2;-4;\right\}\)
Đến đây em lập bảng và tìm đáp số nhé!
2. \(5xy+5x+2y=-16\Rightarrow5x\left(y+1\right)+2y=-16\)
\(\Rightarrow5x\left(y+1\right)+2\left(y+1\right)=-16+2=-14\)
\(\Rightarrow\left(5x+2\right)\left(y+1\right)=14\)
\(\Rightarrow5x+2\inƯ\left(14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)mà 5x+2 lẻ nên \(5x+2\in\left\{\pm1;\pm7\right\}\)
Đến đây em hãy lập bảng và tìm ra đáp số nhé!
Chúc em học tốt
Tìm các số nguyên x, y thỏa mãn: x^2+5xy+6y^2+x+2y-2=0
(x2 + 4xy + 4y2) + xy + 2y2 + x + 2y = 2
(x + 2y)2 + (x + 2y)(y + 1) = 2
(x + 2y)(x + 3y + 1) = 2
TH1: \(\hept{\begin{cases}x+2y=1\\x+3y+1=2\end{cases}}\)<=>\(\hept{\begin{cases}x=1\\y=0\end{cases}}\)(thỏa mãn)
TH2: \(\hept{\begin{cases}x+2y=2\\x+3y+1=1\end{cases}}\)<=> \(\hept{\begin{cases}x=6\\y=-2\end{cases}}\)(thỏa mãn)
TH3: \(\hept{\begin{cases}x+2y=-1\\x+3y+1=-2\end{cases}}\)<=> \(\hept{\begin{cases}x=3\\y=-2\end{cases}}\)(thỏa mãn)
TH4: \(\hept{\begin{cases}x+2y=-2\\\text{x+3y+1=-1}\end{cases}}\)<=>\(\hept{\begin{cases}x=-2\\y=0\end{cases}}\)(thỏa mãn)
tìm các cặp số nguyên (x;y) thỏa mãn: \(x^2\)-5xy +6y^2+1=0
Tìm các cặp số nguyên x,y :
a) (x - 1) . (y + 2) = 7
b) x.(y - 3) = -12
c) xy - 3x - y = 0
d) xy + 2x + 2y = -16
a) ( x - 1 ) . ( y + 2 ) = 7
Lập bảng ta có :
x-1 | 1 | 7 | -1 | -7 |
y+2 | 7 | 1 | -7 | -1 |
x | 2 | 8 | 0 | -6 |
y | 5 | -1 | -8 | -3 |
b) x . ( y - 3 ) = -12
Lập bảng ta có :
y-3 | 12 | -12 | 2 | -2 | -3 | -4 |
x | -1 | 1 | -6 | 6 | 4 | 3 |
y | 15 | -9 | 5 | 1 | 0 | -1 |
c) xy - 3x - y = 0
x . ( y - 3 ) - y = 0
x . ( y - 3 ) - y + 3 = 3
x . ( y - 3 ) - ( y - 3 ) = 3
( x - 1 ) . ( y - 3 ) = 3
Lập bảng ta có :
x-1 | 3 | 1 | -1 | -3 |
y-3 | 1 | 3 | -3 | -1 |
x | 4 | 2 | 0 | -2 |
y | 4 | 6 | 0 | 2 |
d) xy + 2x + 2y = -16
x . ( y + 2 ) + 2y = -16
x . ( y + 2 ) + 2y + 4 = -12
x . ( y + 2 ) + 2 . ( y + 2 ) = -12
( x + 2 ) . ( y + 2 ) = -12
Lập bảng ta có :
x+2 | 1 | -1 | -2 | -6 | -4 | -3 |
y+2 | -12 | 12 | 6 | 2 | 3 | 4 |
x | -1 | -3 | -4 | -8 | -6 | -5 |
y | -14 | 10 | 4 | 0 | 1 | 2 |
Ta có : (x - 1).(y + 2) = 7
=> (x - 1) và y + 2 thuộc Ư(7) = {-7;-1;1;7}
Ta có bảng :
x - 1 | -7 | -1 | 1 | 7 |
y + 2 | -1 | -7 | 7 | 1 |
x | -6 | 0 | 2 | 8 |
y | -3 | -9 | 5 | -1 |
Vậy có 4 cặp x;y thoả mãn : (-6,-3) ; (0 , -9) ; (2 , 5) ; (8, -1)
Ta có : x(y - 3) = -12
=> x ; y - 3 thuộc Ư(-12) = {-12;-6;-4;-3;-2;-1;1;2;3;4;6;12}
Ta có bảng tương tự câu vừa nãy nhé