Những câu hỏi liên quan
NT
Xem chi tiết
MV
28 tháng 10 2017 lúc 20:33

tự nhiên n chứ

Bình luận (0)
LT
Xem chi tiết
NA
31 tháng 3 2019 lúc 10:41

\(N=2^{2019}-2^{2018}-2^{2017}-...-2-1\)

   \(=2^{2019}-\left(2^{2018}+2^{2017}+...+2+1\right)\)

Đặt   \(B=1+2+...+2^{2017}+2^{2018}\)

\(\Rightarrow\) \(2B=2+2^2+...+2^{2018}+2^{2019}\)

\(\Rightarrow\) \(B=2^{2019}-1\)

\(\Rightarrow\) \(N=2^{2019}-2^{2019}+1=1\)

\(\Rightarrow\) \(A=20^1+11^1+2019^1\)

            \(=20+11+2019\)

           \(=2050\)

Study well ! >_<

Bình luận (0)
H24
31 tháng 3 2019 lúc 14:38

N=\(2^{2019}-\left(1+2+.....2^{2018}\right)\)

Đặt B=\(1+2+..........+2^{2018}\)

2B=\(2+2^2+..........+2^{2019}\)

2B-B=B=\(2^{2019}-1\)

Suy ra N=\(2^{2019}-2^{2019}+1=1\)

A=20+11+2019=2050

hok tốt

Bình luận (0)
ND
Xem chi tiết
ND
19 tháng 4 2021 lúc 18:21

Giúp mình với, mình cần gấp sáng mai phải nộp bài rồi

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
NC
21 tháng 5 2020 lúc 7:28

Ta có: 

n = \(2^{2020}-2^{2019}-2^{2018}-...-2-1\)

=> 2n = \(2^{2021}-2^{2020}-2^{2019}-2^{2018}-...-2^2-2\)

=> 2n - n = \(2^{2021}-2^{2020}-2^{2020}+1\)

=> \(n=2^{2021}-2.2^{2020}+1=1\)

=> \(A=2018.1-2019.1+2020.1=2019\)

Bình luận (0)
 Khách vãng lai đã xóa
HN
26 tháng 5 2020 lúc 12:14

Thanks nguyễn linh chi nha

Bình luận (0)
 Khách vãng lai đã xóa
LA
Xem chi tiết
TP
Xem chi tiết
PN
Xem chi tiết
NS
Xem chi tiết
DH
24 tháng 2 2021 lúc 21:41

\(\frac{3}{n-2018}+\frac{2}{n-2019}+\frac{1}{n-2020}=3\)

\(\Leftrightarrow\frac{3}{n-2018}-1+\frac{2}{n-2019}-1+\frac{1}{n-2020}-1=0\)

\(\Leftrightarrow\frac{3-\left(n-2018\right)}{n-2018}+\frac{2-\left(n-2019\right)}{n-2019}+\frac{1-\left(n-2020\right)}{n-2020}=0\)

\(\Leftrightarrow\frac{2021-n}{n-2018}+\frac{2021-n}{n-2019}+\frac{2021-n}{n-2020}=0\)

\(\Leftrightarrow\left(2021-n\right)\left(\frac{1}{n-2018}+\frac{1}{n-2019}+\frac{1}{n-2020}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2021-n=0\left(1\right)\\\frac{1}{n-2018}+\frac{1}{n-2019}+\frac{1}{n-2020}=0\left(2\right)\end{cases}}\)

Giải \(\left(1\right)\Leftrightarrow n=2021\).

Giải \(\left(2\right)\)

- Với \(n< 2018\)thì: \(\frac{1}{n-2018}< 0,\frac{1}{n-2019}< 0,\frac{1}{n-2020}< 0\)nên phương trình vô nghiệm. 

- Với \(n=2018,n=2019,n=2020\)không thỏa điều kiện xác định. 

- Với \(n>2020\)thì \(\frac{1}{n-2018}>0,\frac{1}{n-2019}>0,\frac{1}{n-2020}>0\) nên phương trình vô nghiệm. 

Bình luận (0)
 Khách vãng lai đã xóa
HP
Xem chi tiết