Những câu hỏi liên quan
TK
Xem chi tiết
NC
13 tháng 10 2019 lúc 21:28

Ta có:

1 + 3 có 2 số hạng   => 1 + 3 = 2^2

1 + 3 + 5 có ( 5 - 1 ) : 2 +1 = 3 số hạng =>  1 + 3 + 5 = (5 + 1 ). 3 : 2 = 3^2

1 + 3 + 5 + 7 có: ( 7 - 1 ) : 2 + 1 =4 số hạng => 1 + 3 + 5 + 7 = ( 7 + 1 ) .4 : 2 = 4^2

...

1 + 3 + 5 + 7 +... + 101 có ( 101 -1 ) : 2 + 1 =51 số hạng => 1 + 3 + 5 + 7 +... + 101 = ( 101 + 1 ) . 51 : 2 =51^2

=> \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{51^2}\)

\(< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{50.51}\)

\(=\frac{1}{4}+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)

\(=\frac{1}{4}+\left(\frac{1}{2}-\frac{1}{51}\right)< \frac{1}{4}+\frac{1}{2}=\frac{3}{4}\)

=> B < 3/4

       

Bình luận (0)
CC
Xem chi tiết
HI
29 tháng 7 2017 lúc 16:52

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)( đpcm )

Bình luận (0)
PN
Xem chi tiết
SM
14 tháng 2 2016 lúc 20:36

j mà  nhìu zu zậy làm bao giờ mới xong

Bình luận (0)
TP
14 tháng 2 2016 lúc 20:38

Ủng hộ mk đi các bạn
 

Bình luận (0)
HT
Xem chi tiết
NT
28 tháng 7 2018 lúc 15:54

tích mình đi

ai tích mình

mình ko tích lại đâu

thanks

Bình luận (0)
HT
28 tháng 7 2018 lúc 15:59

ko trả lời m ko k

Bình luận (0)
TA
Xem chi tiết
TX
7 tháng 4 2019 lúc 17:23

Bạn check đề xem đúng không bạn ơi?

Bình luận (0)
H24
Xem chi tiết
PX
6 tháng 4 2017 lúc 8:59

a, ta xét:

\(\frac{1}{2}< \frac{2}{3}\)

\(\frac{3}{4}< \frac{4}{5}\)

\(\frac{5}{6}< \frac{6}{7}\)

.....

\(\frac{99}{100}< \frac{100}{101}\)

=>\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{100}{101}\)

hay:A<B(đpcm)

b,\(A.B=\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}.\frac{2}{3}.\frac{4}{5}.....\frac{100}{101}\)

\(=\frac{1.2.3....100}{2.3.4....101}=\frac{1}{101}\)

c,vì A<B (theo phần a)

=>A.A<B.A

Mà B.A=\(\frac{1}{101}\)

=>A2<101

Mà A2=\(\left(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\right)^2\)

=>\(\left(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\right)^2\)<\(\frac{1}{101}\)<\(\frac{1}{100}=\frac{1}{10^2}\)

=>\(\left(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\right)^2\)<\(\frac{1}{10^2}\)

=>\(\frac{1}{2}.\frac{3}{4}....\frac{99}{100}< \frac{1}{10}\)

Hay A<\(\frac{1}{10}\)

Bình luận (0)
NT
Xem chi tiết
HG
9 tháng 8 2015 lúc 18:43

B = \(1+\frac{1}{3}+\frac{1}{6}+....+\frac{1}{630}=1+\frac{2}{6}+\frac{2}{12}+...+\frac{2}{1260}\)

B = \(1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{35.36}\right)\)

B = \(1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{35}-\frac{1}{36}\right)\)

B = \(1+2\left(\frac{1}{2}-\frac{1}{36}\right)=1+2.\frac{17}{36}\)

B = \(1+\frac{17}{18}\)

B = \(\frac{35}{18}\)

Bình luận (0)
PM
9 tháng 8 2015 lúc 18:45

\(A=\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{99x101}\)

\(A\)\(x2=\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+...+\frac{2}{99x101}\)

\(A\)\(x2=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(A\)\(x2=1-\frac{1}{101}=\frac{100}{101}\)

\(A=\frac{100}{101}:2=\frac{100}{101}x\frac{1}{2}=\frac{50}{101}\)

Bình luận (0)
YB
9 tháng 8 2015 lúc 18:45

Haha ác quá mà

Bình luận (0)
DG
Xem chi tiết
HA
11 tháng 4 2018 lúc 11:25

1)

a)\(x+\dfrac{3}{22}=\dfrac{27}{121}.\dfrac{11}{9}\)

\(x+\dfrac{3}{22}=\dfrac{3}{11}\)

\(x=\dfrac{6}{22}-\dfrac{3}{22}\)

\(x=\dfrac{3}{22}\)

Bình luận (0)
HP
Xem chi tiết
DD
9 tháng 8 2016 lúc 20:32

Để quy đồng mẫu các phân số trong tổng A = 1/2 + 1/3 + 1/4 + ... + 1/100, ta chọn mẫu chung là tích của 2^6 với các thừa số lẻ nhỏ hơn 100. Gọi k1,k2,... k100 là các thừa số phụ tương ứng, tổng A có dạng: B=(k1+k2+k3+...+k100)/(2^6.3.5.7....99).
Trong 100 phân số của tổng A chỉ có duy nhất phân số 1/64 có mẫu chứa 2^6 nên trong các thừa số phụ k1,k2,...k100 chỉ có k64 (thừa số phụ của 1/64) là số lẻ (bằng 3.5.7....99), còn các thừa số phụ khác đều chẵn (vì chứa ít nhất một thừa số 2). Phân số B có mẫu chia hết cho 2 còn tử không chia hết cho 2, do đó B (tức là A) không thể là số tự nhiên.
Ngoài ra với trường hợp tổng quát, hạng tử cuối là 1/n (n là số tự nhiên), ta chọn mẫu chung là 2^k với các thừa số lẻ không vượt quá n, trong đó k là số lớn nhất mà 2^k <= n. Chỉ có thừa số phụ của 1/2^k là số lẻ còn các thừa số phụ khác đều chẵn.
Còn cách giải khác nữa cùng trong sách Nâng cao và phát triển Toán 6 tập hai bạn có thể tham khảo thêm nhé. Chúc bạn học giỏi!

Xét 1/2 + 1/3 + 1/4
1/2 + 1/4 = (2+4)/(2.4) = 2.3/[(3-1)(3+1)] = 2.3/(3^2 - 1) > 2.3/3^2 = 2/3 = 2.(1/3)
---> 1/2+1/3+1/4 > 3.(1/3) = 1 (1)
Lại xét 1/5 + 1/6 + ... + 1/9 + ... + 1/13
1/8+1/10 = (8+10)/(8.10) = 2.9/(9^2 - 1) > 2.9/9^2 = 2/9 = 2.(1/9)
Tương tự cm được 1/7+1/11 > 2.(1/9) ; 1/6+1/12 > 2.1/9; ...; 1/5+1/13 > 2.1/9
---> 1/5+1/6+ ... + 1/13 > 9.(1/9) = 1 (2)
Tiếp tục xài chiêu đó, cm được 1/14+1/15+ ... + 1/38 > 25.(1/25) = 1 (3)
(1),(2),(3) ---> a > 3 (*)

Mặt khác
1/2 + 1/3 + 1/6 = 1 (4)
1/4 + 1/5 + 1/20 = 1/2 (5)
1/7 + 1/8 + 1/9 < 3.(1/7) = 3/7 (6)
1/10+1/11+ ...+1/14 < 5.(1/10) = 1/2 (7)
1/15+1/16+ ...+1/19 < 5.(1/15) = 1/3 (8)
1/21+1/22+ ...+1/26 < 6.(1/21) = 2/7 (9)
1/27+1/28+ ...+1/50 < 24.(1/27) = 8/9 (10)
Cộng (4),(5),(6),(7), (8),(9),(10) ---> a < 2 + 5/7 + 11/9 < 2 + 7/9 + 11/9 = 4 (**)

Từ (*) và (**) ---> 3 < c < 4 ---> a ko phải là số tự nhiên.

====================================
Cách khác (tổng quát hơn, trừu tượng hơn)
Quy đồng mẫu số :
Chọn mẫu số chung là M = BCNN(2;3;4;...;50) = k.2^5 = 32k (k là số tự nhiên lẻ)
Đặt T2 = M/2; T3 = M/3; ...; T50 = M/50
---> a = (T2+T3+ ... + T50) / M
Chú ý rằng T2,T3,...,T50 đều chẵn, chỉ riêng T32 = M/32 = k là lẻ, còn M chẵn
---> T2+T3+...T50 lẻ.Số lẻ ko thể là bội của số chẵn ---> c ko phải là số tự nhiên.

Bình luận (0)