Giải phương trình:
\(\frac{1}{a+b-x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}\)
giải phương trình
\(\frac{1}{a+b-x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}\)
giải phương trình sau ;\(\frac{1}{a+b-x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}\)(x là ẩn số)
Giải phương trình
a) \(\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}+\frac{4x}{a+b+c}=1\)
b)\(\frac{1}{2}\left(\frac{x-a}{bc}+\frac{x-b}{ca}+\frac{x-c}{ab}\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
a) \(\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}+\frac{4x}{a+b+c}=1\)
\(\Leftrightarrow\frac{a+b-x}{c}+1+\frac{b+c-x}{a}+1+\frac{c+a-x}{b}+1+\frac{4x}{a+b+c}-4=0\)
\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{a}+\frac{a+b+c-x}{b}+\frac{4x-4\left(a+b+c\right)}{a+b+c}=0\)
\(\Leftrightarrow\left(x-a-b-x\right)\left(\frac{1}{bc}+\frac{1}{ca}+\frac{1}{ab}\right)=0\)
b)đề bài như trên
\(\Leftrightarrow\left(\frac{x-a-b-c}{bc}\right)+\left(\frac{x-b}{ca}-\frac{1}{a}-\frac{1}{c}\right)+\left(\frac{x-c}{ab}-\frac{1}{a}-\frac{1}{b}\right)=0\)
\(\Leftrightarrow\left(x-a-b-c\right)\left(\frac{1}{bc}+\frac{1}{ca}+\frac{1}{ab}\right)=0\)
\(a,\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}+\frac{4x}{a+b+c}=1\)
\(a,\frac{a+b-x}{c}+1+\frac{b+c-x}{a}+1+\frac{c+a-x}{b}+1+\frac{4x}{a+b+c}-4=0\)
\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{a}+\frac{a+b+c-x}{b}-\frac{4a+4b+4c-4x}{a+b+c}=0\)
\(\Leftrightarrow\left(a+b+c-x\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{4}{a+b+c}\right)=0\)
\(\Leftrightarrow a+b+c-x=0\)Do \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{4}{a+b+c}\ne0\)
\(\Leftrightarrow x=a+b+c\)
Vậy phương trình có nghiệm \(x=a+b+c\)
giải phương trình : \(\frac{x-a}{bc}+\frac{x-b}{ac}+\frac{x-c}{ab}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Giải và biện luận phương trình sau: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{x}=\frac{1}{a+b+x}\)
Giải phương trình:\(\frac{1}{a+b-x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}\)(x là ẩn số)
Ta có: \(\frac{1}{a+b-x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}\)
\(\Leftrightarrow\frac{1}{a+b-x}-\frac{1}{x}=\frac{1}{a}+\frac{1}{b}\)
\(\Leftrightarrow\frac{2x-a-b}{x\left(a+b-x\right)}=\frac{a+b}{ab}\)
\(\Leftrightarrow ab\left(2x-a-b\right)=\left(a+b\right)\left(a+b-x\right)x\)
\(\Leftrightarrow x^2\left(a+b\right)-x\left(a^2+b^2\right)-ab\left(a+b\right)=0\)
Ta có :\(\frac{1}{a+b-x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}\)
\(\Leftrightarrow\frac{1}{a+b-x}-\frac{1}{x}=\frac{1}{a}+\frac{1}{b}\)
\(\Leftrightarrow\frac{2x-a-b}{x\left(a+b-x\right)}=\frac{a+b}{ab}\)
\(\Leftrightarrow x^2\left(a+b\right)-x\left(a^2+b^2\right)-ab\left(a+b\right)=0\)
Giải Phương Trình:
\(\frac{x-a}{bc}+\frac{x-b}{ac}+\frac{x-c}{ab}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(pt\Leftrightarrow\frac{xa-a^2+xb-b^2+xc-c^2}{abc}=\frac{2\left(ab+bc+ca\right)}{abc}\Rightarrow x\left(a+b+c\right)-\left(a+b+c\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c=x\\a+b+c=0\end{cases}}\)
Giải và biện luận phương trình
\(\frac{1}{x}-\frac{1}{a}+\frac{1}{b}=\frac{1}{x-a+b}\)
1/x - 1/a + 1/b = (1 -1 +1)/(x -a +b) = 1/(x-a+b)
OK CHỨ BẠN____CHÚC HOK TỐT
\(\frac{1}{a+b-x}+\frac{1}{x}=1+\frac{a+b}{ab}\Leftrightarrow\frac{x+a+b-x}{a+b-x}=\frac{a+b}{ab}\Leftrightarrow\left(a+b\right)\left(\frac{1}{x\left(a+b-x\right)}-\frac{1}{ab}\right)=0\Rightarrow x\left(a+b-x\right)\)=>x=a &b
Cho phương trình \(\frac{a-1}{x-1}+\frac{1}{x+1}=\frac{a}{x+a}\)
a, Giải phương trình theo a
b, Tìm a nguyên để phương trình có nghiệm x la một số nguyên
em mới lớp 5 nên em chỉ giải đc phần a thôi! kết quả =1
100% là đúng