Những câu hỏi liên quan
H24
Xem chi tiết
PA
Xem chi tiết
DV
5 tháng 6 2016 lúc 22:27

\(A\left(x\right)=\frac{x}{\left(x+1999\right)^2}max\)

<=> (x + 1999)2 min

Mà (x + 1999)2 > 0 nên (x + 1999)2 min = 0 <=> x = -1999

Vậy GTLN của A(x) là 0 <=> x = -1999

Bình luận (0)
HP
6 tháng 6 2016 lúc 12:17

Cách trình bày của ĐTV sai trầm trọng, lp 8 ko thể trình bày như thế

Bình luận (0)
HP
6 tháng 6 2016 lúc 14:45

Mà Việt làm sai bét rồi,x>0 cơ mak,sao x=-1999 đc?

Bình luận (0)
NN
Xem chi tiết
NC
27 tháng 2 2019 lúc 8:48

Ta có:

\(\left(\frac{1}{4}-2x\right)^2\ge0,\left|8x-1\right|\ge0\)

=> \(-\frac{1}{5}\left(\frac{1}{4}-2x\right)^2\le0,-\left|8x-1\right|\le0\)

=> \(C\le0+0\)+2016=2016

"=" xảy ra <=> \(\hept{\begin{cases}\frac{1}{4}-2x=0\\8x-1=0\end{cases}\Leftrightarrow}x=\frac{1}{8}\)

Vậy C đạt giá trị lớn nhất là 2016 khi x=1/8

Bình luận (0)
NM
Xem chi tiết
TH
8 tháng 3 2019 lúc 19:49

Cho đường tròn (o)  Và điểm A khánh  nằm ngoài đường tròn từ A vê 2 tiếp tuyến AB, AC với đường tròn . D nằm giữa A và E tia phân giác của góc DBE cắt DE ở I 

a)  chứng minh rằng AB2 =AD * AE

b) Chứng minh rằng BD/BE=CD/CE

Bình luận (0)
TA
Xem chi tiết
AH
22 tháng 6 2023 lúc 15:58

Lời giải:

$\frac{3}{2}B=\frac{3\sqrt{x}}{x+\sqrt{x}+1}$
$\Rightarrow 1-\frac{3}{2}B=1-\frac{3\sqrt{x}}{x+\sqrt{x}+1}=\frac{x-2\sqrt{x}+1}{x+\sqrt{x}+1}=\frac{(\sqrt{x}-1)^2}{x+\sqrt{x}+1}\geq 0$ với mọi $x\geq 0$

$\Rightarrow \frac{3}{2}B\leq 1$

$\Rightarrow B\leq \frac{2}{3}$

Vậy $B_{\max}=\frac{2}{3}$ khi $\sqrt{x}-1=0\Leftrightarrow x=1$

Bình luận (0)
NB
Xem chi tiết
HN
31 tháng 3 2019 lúc 11:27

\(D=\frac{x^{2}-2x+2018}{x^{2}}\)

\(D=\frac{x^{2}-2*x*1+1+2017}{x^{2}}\)

\(D= \frac{(x-1)^{2}+2017}{x^{2}}\)

Nhận xét: Để D Đặt GTNN thì \((x-1)^{2} + 2017\) Đạt GTNN

Mà \((x-1)^{2} \geq 0\) . Nên:

\((x-1)^{2}+2017\)\(\geq 2017\). GTNN của \((x-1)^{2}+2017=2017 \) Khi x-1=0 => x=1

Thay x=1 vào D

GTNN D=2017

Bình luận (0)
HN
31 tháng 3 2019 lúc 11:30

xin lỗi mình lỡ tìm max rồi

Bình luận (0)
NT
3 tháng 4 2020 lúc 9:07

Kết quả 2017

Bình luận (0)
 Khách vãng lai đã xóa
VC
Xem chi tiết
HH
1 tháng 11 2016 lúc 23:07

P=\(\frac{2.\left|x\right|-1+4}{2.\left|x\right|-1}\)=1+\(\frac{4}{2.\left|x\right|-1}\)

1, Để P có GTLN thì 2.|x| -1 phải dương và có GTNN

Mà |x|>=0 với mọi x nên 2.|x| >=0

=> 2.|x| -1 có giá trị dương nhỏ nhất là 1 khi x=1 hoặc x= -1

=> GTLN của P =1 + 4/1 =1+4=5 khi x=1 hoặc x= -1

2, Đẻ P là số tự nhiên thì  \(\frac{4}{2.\left|x\right|-1}\)là số tự nhiên

=> 2.|x| -1 là ước của 4

từ đó tìm ra x

 
Bình luận (0)
VC
1 tháng 11 2016 lúc 21:45

Giúp mình với, mk cần gấp lắm rồi

Bình luận (0)
VC
1 tháng 11 2016 lúc 21:46

Giúp mình với, mk cần gấp lắm rồi

Bình luận (0)
TT
Xem chi tiết
NP
11 tháng 7 2018 lúc 21:40

Bài 1:Vì \(\left(x+1\right)^{2008}\ge0\) nên \(-\left(x+1\right)^{2008}\le0\)

\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010-0=2010\)

Nên P lớn nhất khi \(P=2010\Rightarrow\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)

Bài 2:Vì 5>0 nên C nhỏ nhất khi \(\left|x\right|-2< 0\) và \(\left|x\right|-2\) lớn nhất

Nên \(\left|x\right|-2=-1\Rightarrow\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

Bình luận (0)
KB
11 tháng 7 2018 lúc 21:38

\(P=2010-\left(x+1\right)^{2008}\)

\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\)

\(\left[\left(x+1\right)^{1004}\right]^2\ge0\)

\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\le2010\)

Để \(P_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2=0\)

\(\Rightarrow P=2010-0=2010\)

(Dấu"=" xảy ra <=> \(x=-1\)

Bài 2:

Để \(C_{Min}\Rightarrow|x|-2_{Min}\Rightarrow|x|_{Min}\Rightarrow|x|=1\Rightarrow|x|-2=-1\)

\(\Rightarrow C=-5\)

Vì để C Min => /x/ -2 là số nguyễn âm lơn nhất có thể

Bình luận (0)
DD
Xem chi tiết
H24
Xem chi tiết
AH
22 tháng 6 2023 lúc 15:59

Cách 1: 

Áp dụng BĐT Cô-si:

$x+1\geq 2\sqrt{x}\Rightarrow A=\frac{3\sqrt{x}}{x+1}\leq \frac{3\sqrt{x}}{2\sqrt{x}}=\frac{3}{2}$

Vậy $A_{\max}=\frac{3}{2}$

Giá trị này đạt tại $x=1$

Bình luận (0)
AH
22 tháng 6 2023 lúc 16:00

Cách 2:

$\frac{2}{3}A=\frac{2\sqrt{x}}{x+1}$

$\Rightarrow 1-\frac{2}{3}A=1-\frac{2\sqrt{x}}{x+1}=\frac{x-2\sqrt{x}+1}{x+1}=\frac{(\sqrt{x}-1)^2}{x+1}\geq 0$ với mọi $x\geq 0$

$\Rightarrow \frac{2}{3}A\leq 1$

$\Rightarrow A\leq \frac{3}{2}$

Vậy $A_{\max}=\frac{3}{2}$. Giá trị này đạt tại $\sqrt{x}-1=0\Leftrightarrow x=1$

Bình luận (0)