Cho a,b,c là độ dài của 3 cạnh tg biết cv=2
a)Cm a,b,c<1
b)\(4\left(a^2+b^2+c^2\right)+9abc\ge8\)
Cho a,b,c là độ dài của 3 cạnh tg biết cv=2
a)Cm a,b,c<1
b)4(a^2+b^2+c^2)+9abc>=8
ta có BĐT \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)(chứng minh = AM-GM)
\(abc\ge\left(2-2a\right)\left(2-2b\right)\left(2-2c\right)=8\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
\(abc\ge8\left[1-\left(a+b+c\right)+\left(ab+bc+ca\right)-abc\right]\)
\(\Leftrightarrow9abc\ge-8+8\left(ab+bc+ca\right)\)
do đó \(VT\ge4\left(a^2+b^2+c^2\right)+8\left(ab+bc+ca\right)-8\)
\(VT\ge4\left(a+b+c\right)^2-8=16-8=8\)
Dấu = xảy ra khi \(a=b=c=\frac{2}{3}\)
Cho a,b,c là độ dài của 3 cạnh tg biết cv=2
a)Cm a,b,c<1
b)4(a^2+b^2+c^2)+9abc>=8
a) Theo bất đẳng thức tam giác ta có :
\(\Rightarrow\hept{\begin{cases}a< b+c\\b< c+a\\c< a+b\end{cases}\left(1\right)}\)
Ta có : \(a+b+c=2\)
\(\Rightarrow\hept{\begin{cases}b+c=2-a\\a+b=2-c\\a+c=2-b\end{cases}\left(2\right)}\)
Từ (1) và (2)
\(\Rightarrow\hept{\begin{cases}a< 2-a\\b< 2-b\\c< 2-c\end{cases}\Rightarrow\hept{\begin{cases}2a< 2\\2b< 2\\2c< 2\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}a< 1\\b< 1\\c< 1\end{cases}\left(đpcm\right)}\)
b ) Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left(a+b-c\right)\left(c+a-b\right)\le\left(\frac{2a}{2}\right)^2=a^2\)
Tường tự ta có : \(\hept{\begin{cases}\left(a+b-c\right)\left(b+c-a\right)\le b^2\\\left(b+c-a\right)\left(c+a-b\right)\le c^2\end{cases}}\)
\(\Rightarrow\left(abc\right)^2\ge\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\)
\(\Rightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
\(\Leftrightarrow9abc\ge8\left(ab+bc+ca\right)-8\)
\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge8\left(ab+bc+ca\right)\)
\(+4\left(a^2+b^2+c^2\right)-8\)
\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge4\left(a+b+c\right)^2-8\)
\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge8\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c=\frac{2}{3}\)
Chúc bạn học tốt !!!
Cho a,b,c là độ dài của 3 cạnh tg biết cv=2
a)Cm a,b,c<1
b)4(a^2+b^2+c^2)+9abc>=8
a) Theo bất đẳng thức tam giác ta có
\(\Rightarrow\left\{{}\begin{matrix}a< b+c\\b< c+a\\c< a+b\end{matrix}\right.\) (1)
Ta có \(a+b+c=2\)
\(\Rightarrow\left\{{}\begin{matrix}b+c=2-a\\a+b=2-c\\a+c=2-b\end{matrix}\right.\) (2)
Từ (1) và (2)
\(\Rightarrow\left\{{}\begin{matrix}a< 2-a\\b< 2-b\\c< 2-c\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}2a< 2\\2b< 2\\2c< 2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a< 1\\b< 1\\c< 1\end{matrix}\right.\) ( đpcm )
b) Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left(a+b-c\right)\left(c+a-b\right)\le\left(\dfrac{2a}{2}\right)^2=a^2\)
Tượng tự ta có \(\left\{{}\begin{matrix}\left(a+b-c\right)\left(b+c-a\right)\le b^2\\\left(b+c-a\right)\left(c+a-b\right)\le c^2\end{matrix}\right.\)
\(\Rightarrow\left(abc\right)^2\ge\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\)
\(\Rightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
\(\Leftrightarrow9abc\ge8\left(ab+bc+ca\right)-8\)
\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge8\left(ab+bc+ca\right)+4\left(a^2+b^2+c^2\right)-8\)
\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge4\left(a+b+c\right)^2-8\)
\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge8\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=\dfrac{2}{3}\)
sách nâng cao phát triển , tìm phần bđt ấy
Cho a,b,c là độ dài 3 cạnh của 1 tam giác
cm a/a^4+b^4+c^4-2a^2-b^2-2a^2c^2<0
cho tam giác ABC vuông tại A, B = 60 và AB = 5cm. Tpg góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a. CM Tg ABD = Tg EBD
b. CM: Tg ABE là tg đều
c. Tính độ dài cạnh BC
cho một tam giác vuông ,biết tỉ số 2 cạnh gcs vg là 5/12 .Cạnh huyền = 26 cm
a, tính độ dài 2 cạnh góc vg
b. tính độ dài 2 hình chiếu của 2 cạnh góc vg trên cạnh huyền
c, tính đọ dài của đg cao tg ứng vs cạnh huyền
cho a;b;c là độ dài 3 cạnh của tg cmr : ab + bc + ac =< a^2 + b^2 + c^2 < 2(ab + bc + ac)
vì a;b;c là độ dài 3 cạnh của 1 tg
\(\Rightarrow\hept{\begin{cases}a+b>c\\a+c>b\\b+c>a\end{cases}\Rightarrow\hept{\begin{cases}ac+bc>c^2\\ab+bc>b^2\\ab+ca>a^2\end{cases}}}\)
\(\Rightarrow ab+bc+ac+ab+bc+ac>a^2+b^2+c^2\)
\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ac\right)\) (1)
có : \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}\Rightarrow\hept{\begin{cases}a^2-2ab+b^2\ge0\\b^2-2bc+c^2\ge0\\c^2-2ac+a^2\ge0\end{cases}\Rightarrow}\hept{\begin{cases}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{cases}}}\)
\(\Rightarrow2ab+2bc+2ac\le2a^2+2b^2+2c^2\)
\(\Rightarrow ab+bc+ac\le a^2+b^2+c^2\) (2)
\(\left(1\right)\left(2\right)\Rightarrow ab+bc+ac\le a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)
phân tích ĐTTNT :A=2a^2b^2+2b^2c^2+2a^2c^2-a^4-b^4-c^4. nếu a,b,c là độ dài 3 cạnh tam giác thì CM A >0
bạn ơi a2 là a^2 bạn nhé,mấy cái khác cũng tương tự,vì mình lười bấm nhé)
A=2a2b2+2b2c2+2a2c2−a4−b4−c4
⟺A=4a2c2−(a4+b4+c4−2a2b2+2a2c2−2b2c2)
⟺A=4a2c2−(a2−b2+c2)2
⟺A=(2ac+a2−b2+c2)(2ac−a2+b2−c2)
⟺A=((a+c)2−b2)(b2−(a−c)2)
⟺A=(a+b+c)(a+c−b)(b+a−c)(b−a+c)
Mà a, b, ca, b, c là 33 cạnh của tam giác nên:a+b+c>0;a+c−b>0;b+a−c>0;b−a+c>0⟹(a+b+c)(a+c−b)(b+a−c)(b−a+c)>0
⟹A>0 (Dpcm)